Advertisement

Microbial Processes at Deep Sea Hydrothermal Vents

  • Holger W. Jannasch
Chapter
Part of the NATO Conference Series book series (NATOCS, volume 12)

Abstract

The primary production of organic carbon by chemosynthetic sulfur-oxidizing bacteria has been proposed to provide the base of the food chain for the extensive populations of animals found at hydrothermal vents at depths of about 2600 m. The oxidation of reduced inorganic compounds (such as H2S, S0, S2O 3 2− , NH 4 + , NO 2 2− , Fe2+ and possibly Mn2+) as the source of energy for chemosynthesis is equivalent to the role of light in photosynthesis. Reported here is the present state of proof of this hypothesis which includes the work of many collaborating scientists. Epifluorescence microscopy and nucleotide determinations demonstrated substantial bacterial densities in the emitted vent waters. Multi-layered mats of unicellular bacteria were observed, often encased in heavy Mn/Fe deposits, as well as assemblages of Leucothrix/Thiothrix-like filaments and others resembling trichomes of apochlorotic cyanobacteria. Masses of Beggiatoa filaments were found on artificial surfaces deposited near the vents for 10 months. Species of the genera Thiomicrospira, Thiobacillus and Hyphomonas have been isolated and studied in detail. Furthermore, an anaerobically chemosynthetic, extremely thermophilic, methanogenic bacterium was isolated as well as a number of “Type I” methylotrophic bacteria oxidizing methane and methylamine. The gills of bivalves, collected from areas intermittently flushed with H2S-containing vent water and oxygenated ambient seawater, contained masses of bacteria showing high activities of sulfur metabolism and Calvin-Benson cycle enzymes. Likewise the “trophosome” tissue of the gutless tube worm Riftia was found to consist of procaryotic cells exhibiting ATP-generating and CO2-reducing activity. Thus, three locations of chemosynthetic production are proposed: (1) within the subsurface vent system at elevated temperatures, (2) in microbial mats in the immediate surrounding of the vents, and (3) in various symbiotic associations with invertebrates. It appears that the predominant chemosynthetic production, in combination with the most efficient transfer of organic carbon to the vent animals, occurs via symbiosis.

Keywords

Hydrogen Sulfide Microbial Process Hydrothermal Vent Giant Clam Tube Worm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arp, A. G. and Childress, J. J., 1981, Blood function in the hydrothermal vent vestimentiferan tube worm. Science 213: 342–344.CrossRefGoogle Scholar
  2. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. and Wolfe, R. S., 1979, Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.Google Scholar
  3. Baross, J. A., Lilley, M. D. and Gordon, L. I., 1982, Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature 298: 366–368.CrossRefGoogle Scholar
  4. Boss, K. J. and Turner, R. D., 1980. The giant white clam from the Galapagos Rift Calyptogena magnifica species novum. Malacologia 20: 161–194.Google Scholar
  5. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. and Waterbury, J. B., 1981. Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340–341.CrossRefGoogle Scholar
  6. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane K. and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.CrossRefGoogle Scholar
  7. Corliss, J. B., Baross, J. A. and Hoffman, S. E., 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol. Acta No. SP, 59–69.Google Scholar
  8. Davis, S. L. and Whittenbury, R., 1970, Fine structure of methane and other hydrocarbon utilizing bacteria. J. Gen. Microbiol. 61: 227–232.CrossRefGoogle Scholar
  9. De Bont, J. A. M., van Dijken, J. P. and Harder, W., 1981. Di-methyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. J. Gen. Microbiol. 127: 315–323.Google Scholar
  10. Deming, J. W., Tabor, P. S. and Colwell, R. R., 1981, Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates. Microb. Ecol. 7: 85–94.CrossRefGoogle Scholar
  11. Edmond, J. M., Corliss, J. B. and Gordon, L. I., 1979, Ridge crest-hydrothermal metamorphism at the Galapagos spreading center and reverse weathering, in: “Deep Drilling Results in the Atlantic Ocean: Ocean Crust,” M. Talwani, C. Harrison andGoogle Scholar
  12. D. Hayes eds., Amer. Geophys. Union, Washington, D.C., pp. 383–390.Google Scholar
  13. Ehrlich, H. 1982. Manganese oxidizing bacteria from a hydrothermally active area on the Galapagos Rift. Ecol. Bull. 35. In press.Google Scholar
  14. Enright, J. T., Newman, W. A., Hessler, R. R. and McGowan, J. A., 1981, Deep-ocean hydrothermal vent communities. Nature 289: 219–221.CrossRefGoogle Scholar
  15. Felbeck, H. 1981. Chemoautotrophic potentials of the hydrothermal vent tube worm, Riftia pachyptila (Vestimentifera). Science 213: 336–338.CrossRefGoogle Scholar
  16. Felbeck, H., Childress, J. J. and Somero, G. N., 1981, Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293: 291–293.CrossRefGoogle Scholar
  17. Harwood, C. S., Jannasch, H. W. and Canale-Parole, E., 1982, An anaerobic spirochaete from deep sea hydrothermal vents. Ape. Environ. Microbiol. 44: 234–237.Google Scholar
  18. Heinen, W. and Lauwers, A. M., 1981, Growth of bacteria at 100°C and beyond. Arch. Microbiol. 129: 127–128.CrossRefGoogle Scholar
  19. Jannasch, H. W., 1983, Interactions between the carbon and sulfur cycles in the marine environment, in: “The Major Biochemical Cycles and Their Interactions,” B. Bolin and R. Cook, eds., Wiley, New York. In press.Google Scholar
  20. Jannasch, H. W. and Wirsen, C. O., 1979, Chemosynthetic primary production at East Pacific sea floor spreading centers. BioScience 29: 592–598.CrossRefGoogle Scholar
  21. Jannasch, H. W. and Wirsen, C. O., 1981, Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41: 528–538.Google Scholar
  22. Jannasch, H. W., Wirsen, C. O. and Taylor, C. D., 1976, Undecompressed microbial populations from the deep sea. Appl. Environ. Microbiol. 32: 360–367.Google Scholar
  23. Jones, M. L., 1980, Riftia pachyptila, n. gen., n. sp., the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora)Proc. Biol. Soc. Wash. 93: 1295–1313.Google Scholar
  24. Jones, M. L., 1981, Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science 213: 333–336CrossRefGoogle Scholar
  25. Karl, D. M., 1980, Cellular nucleotide measurements and applica- tions in microbial ecology. Microbiol. Rev. 44: 739–796.Google Scholar
  26. Karl, D. M., Wirsen, C. O. and Jannasch, H. W., 1980, Deep-sea primary production at the Galapagos hydrothermal vents. Science 207: 1345–1347.CrossRefGoogle Scholar
  27. Kuenen, J. G. and Veldkamp, H., 1972, Thiomicrospira peloptila gen. n., sp. n., a new obligately chemolithotrophic colorless sulfur bacterium. Ant. van Leeuwen. 38: 241–256.CrossRefGoogle Scholar
  28. Leigh, J. A. and Jones, W. J., 1983, A new extremely thermophilic methanogen from a submarine hydrothermal vent. Am. Soc. Microbiol., 83rd Ann. Meetg., New Orleans.Google Scholar
  29. Lipmann, F., 1966, The Origins of Prebiological Systems, “Mir” (Moscow), pp. 261–271.Google Scholar
  30. Lister, C. R. B., 1977, Qualitative models of spreading center processes, including hydrothermal penetration. Tectonophysics 37: 203–218.CrossRefGoogle Scholar
  31. Liu, C. L., Hart, N. and Peck, H. D., 1982, Inorganic pyrophosphate: energy source for sulfate reducing bacteria of the genus Desulfotomaculum. Science 217: 363–364.CrossRefGoogle Scholar
  32. Lonsdale, P., 1977, Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24: 857–863.CrossRefGoogle Scholar
  33. Lonsdale, P. F., Bischoff, J. L., Burns, V. M., Kastner, M. and Sweeney, R. E., 1980, A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center. Earth Planet. Sci. Lett. 49: 8–20.CrossRefGoogle Scholar
  34. Lupton, J. E., Klinkhammer, G., Normark, W., Haymon, R., Macdonald, K., Weiss, R. and Craig, H., 1980, Helium-3 and manganese at the 21°N East Pacific Rise hydrothermal site. Earth Planet. Sci. Lett. 50: 115–127.CrossRefGoogle Scholar
  35. Marquis, R. E. and Matsumura, P., 1978, Microbial life under pressure, in: “Microbial Life in Extreme Environments,” D. J. Kushner, ed., Academic Press, New York, pp. 105–158.Google Scholar
  36. Moore, R. L., 1981, The genera Hyphomicrobium, Pedomicrobium, and Hyphomonas, in: “The Prokaryotes,” M. P. Starr et al., eds., Springer Verlag, Berlin, pp. 480–487.Google Scholar
  37. Mottl, M. J., Holland, H. D. and Corr, R. F., 1979, Chemical exchange during hydrothermal alteration of basalt by seawater–II. Experimental results for Fe, Mn, and sulfur species. Geochim. Cosmochim. Acta 43: 869–884.CrossRefGoogle Scholar
  38. Rau, G. H., 1981, Hydrothermal vent clam and tube worm 13c/12c: further evidence of non-photosynthetic food source. Science 213: 338–340.CrossRefGoogle Scholar
  39. Ruby, E. G. and Jannasch, H. W., 1982, Physiological characteristics of Thiomicrospira sp. L-12 isolated from deep sea hydrothermal vents. J. Bacteriol. 149: 161–165.Google Scholar
  40. Ruby, E. G., Wirsen, C. O. and Jannasch, H. W., 1981, Chemolitho- trophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl. Environ. Microbiol. 42: 317–324.Google Scholar
  41. Schmidt, J. M. and J. R. Swafford. 1981. The genus Seliberia. in: “The Prokaryotes,” M. P. Starr et al., eds., Springer Verlag, Berlin, pp. 516–519.Google Scholar
  42. Simoneit, B. R. T. and Lonsdale, P. F., 1982, Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature 295: 198–202.CrossRefGoogle Scholar
  43. Southward, A. J., Southward, E. C., Dando, P. R., Rau, G. H., Felbeck, H. and Flugel, H., 1981, Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature 293: 616–620.CrossRefGoogle Scholar
  44. Spiess, F. N., MacDonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J. and Rangin, C., 1980, East Pacific Rise: Hot springs and geophysical experiments. Science 207: 1421–1433.CrossRefGoogle Scholar
  45. Stetter, K. O., 1982, Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300: 258–260.CrossRefGoogle Scholar
  46. Tuttle, J. H., Wirsen, C. O. and Jannasch, H. W., 1983, Microbial activities in the emitted hydrothermal vent waters of the Galapagos Rift vents. Mar. Biol. In press.Google Scholar
  47. Welhan, J. A. and Craig, H., 1979, Methane and hydrogen in East Pacific Rise hydrothermal fluid. Geophys. Res. Lett. 6: 829.CrossRefGoogle Scholar
  48. Wittenberg, J. B., Morris, R. J., Gibson, Q. H. and Jones, M. L., 1981, Hemoglobin kinetics of the Galapagos Rift vent tube worm Riftia pachyptila Jones (Pogonophora, Vestimentifera). Science 213: 344–346.CrossRefGoogle Scholar
  49. Yayanos, A., Dietz, A. S. and Van Boxtel, R., 1979, Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205: 808–810.CrossRefGoogle Scholar
  50. Zillig, W., Schnabel, R., and Tu, J., 1982, The phylogeny of Archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwiss. 69: 197–204.CrossRefGoogle Scholar
  51. Zillig, W., Stetter, K. O., Schafer, W., Janekovic, D., Wunderl, S., Holz, I. and Palm, P., 1981, Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl. Bact. Hyg., I. Abt. Orig. C2: 205–227.Google Scholar
  52. ZoBell, C. E., 1968, Bacterial life in the deep sea. Bull. Misaki Mar. Biol. Inst. (Kyoto) 12: 77–96.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Holger W. Jannasch
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations