Introduction to the Biology of Hydrothermal Vents

  • J. Frederick Grassle
Part of the NATO Conference Series book series (NATOCS, volume 12)


A search for hydrothermal vents forming metal deposits led to the unexpected discovery of dense beds of clams, mussels, and vestimentiferan worms on the Galapagos Rift in 1977. The clams were first seen in photographs taken by Deep Tow (Lonsdale, 1977) and the whole vent community was later observed from ALVIN (Corliss and Ballard, 1977; Corliss et al., 1979). Subsequent expeditions in 1979 to the Galapagos Rift and in 1982 to the Guaymas Basin, 11–13°N and 21°N on the East Pacific Rise included ecologists, microbiologists, systematists, physiologists, and biochemists.


Rift Valley Hydrothermal Vent Spreading Center Brachyuran Crab Fuca Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arp, A. J., and Childress, J. J., 1981a, Blood function in the hydrothermal vent vestimentiferan tubeworm, Science 213: 34 2344.Google Scholar
  2. Arp, A. J., and Childress, J. J., 1981b, Functional characteristics of the blood of the deep-sea hydrothermal vent brachyuran crab, Science 214: 559–561.Google Scholar
  3. Arp, A. J., and Childress, J. J., 1983, Sulfide binding by the blood of the hydrothermal vent tubeworm Riftia pachyptila, Science 219:295–297.Google Scholar
  4. Ballard, R. D., 1977, Notes on a major oceanographic find, Oceanus, 20 (3): 35–44.Google Scholar
  5. Ballard, R. D., and Grassle, J. F., 1979, Return to Oases of the Deep, Nat. Geogr. 156(5):689–705.Google Scholar
  6. Ballard, R. D., Francheteau, J., Juteau, T., Rangan, C., andGoogle Scholar
  7. Normark, W., 1981, East Pacific Rise at 21°N: the volcanic, tectonic, and hydrothermal processes of the central axis, Earth Planet. Sci. Let. 55:1–10.Google Scholar
  8. Ballard, R. D., Holcomb, R. T., and van Andel T. H., 1979, TheGoogle Scholar
  9. Galapagos Rift at 86°W: 3. Sheet flows, collapse pits, and lava lakes of the rift valley, Jour. Geophys. Res. 84(B10): 5407–5422.Google Scholar
  10. Ballard, R. D., van Andel, T. H., and Holcomb, R. T., 1982, The Galapagos Rift at 56°W 5. Variations in volcanism, structure, and hydrothermal activity along a 30 km segment of the Rift Valley, Jour. Geophys. Res. 87(B2):1149–1161.Google Scholar
  11. Baross, J. A., Lilley, M. D., and Gordon, L. I., 1982, Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria?, Nature 298: 366–368.Google Scholar
  12. Boss, K. J., and Turner, R. D., 1980, The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum, Malacologia 20(1):161–194.Google Scholar
  13. Burreson, E. M., 1981, A new deep-sea leech, Bathybdella sawyeri gen. et sp. n. from thermal vent areas on the Galapagos Rift, Proc. Biol. Soc. Wash. 94: 483–491.Google Scholar
  14. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B., 1981, Procaryotic cells in the hydrothermal vent tubeworm, Riftia pachyptila Jones: possible chemoautotrophic symbionts, Science 213: 340–342.Google Scholar
  15. Childress, J. J., and Mickel, T. J., 1982, Oxygen and sulfide consumption rates of the vent clam, Calyptogena pacifica Mar. Biol. Let. 3:73–79.Google Scholar
  16. Corliss, J. B., and Ballard, R. D., 1977, Oases of life in the cold abyss, Nat. Geogr. 152(4):441–453.Google Scholar
  17. Cohen, D. M., and Haedrich, R. L., The fish fauna of the Galapagos thermal vent region, Deep-Sea Res. (in press).Google Scholar
  18. Corliss, J. B., Baross, J. A., and Hoffman, S. E., 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth, Oceanol. Acta SP:59–69.Google Scholar
  19. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K.,Williams, D.Google Scholar
  20. Bainbridge, A., Crane, K., and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift, Science 203: 1073–1083.Google Scholar
  21. Crane, K.,and Ballard, R. D., 1980, The Galapagos Rift at 86°W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the Rift Valley, Jour. Geophys. Res. 85(B3):1443–1454.Google Scholar
  22. Desbruyères, D., and Laubier L., 1980, Alvinella pompejana gen. sp. nov., Ampharetidae aberrant des sources hydrothermales de la ride Est-Pacifique, Oceanol. Acta 3:267–274.Google Scholar
  23. Desbruyères, D., and Laubier, L., 1982, Paralvinella grasslei new genus, new species of Alvinellinae (Polychaeta: Ampharetidae) from the Galapagos Rift geothermal vents, Proc. Biol. Soc. Wash., 95:484–494.Google Scholar
  24. Desbruyères, D., Crassous, P., Grassle, J., Khripounoff, A.Google Scholar
  25. Reyss, D., Rio, M., and Van Praet, M., 1982. Donnees ecologiques sur un nouveau site d’hydrothermalisme actif de la ride du Pacifique Oriental, C.R. Acad. Sci. Paris Ser. III 295: 489–494.Google Scholar
  26. Ehrlich, H., 1982, Manganese oxidizing bacteria from a hydrothermal active area on the Galapagos Rift. Ecol. Bull. 35, (in press).Google Scholar
  27. Enright, J. T., Newman, W. A., Hessler, R. R., and McGowan, J. A., 1981, Deep-ocean hydrothermal vent communities, Nature 289: 219–221.Google Scholar
  28. Fatton, E., and Roux, M., 1981a, Modalites de croissance et microstructure de la coquille de Calyptogena (Vesicomyidae, Lamellibranches), en relation avec les sources hydrothermales oceaniques, C.R. Acad. Sci. Paris 292:55–60.Google Scholar
  29. Fatton, E., and Roux, M., 1981b, Etapes de l’organisation micro-structurale chez Calyptogena magnificia Boss et Turner, bivalve a croissance rapide des sources hydrothermales, oceanique, C.R. Acad. Sci. Paris 243:63–68.Google Scholar
  30. Fatton, E., Marien, G., Pachiaudi, C., Rio, M., and Roux, M., 1982, Fluctuations de l’activite des sources hydrothermales ocean-igues (Pacifique Est, 21°N) enregistrees lors de la croissance des coquilles de Calyptogena magnifica (Lamellibranche, Vesicomyidae) par les isotopes stables du carbone et de l’oxygene, C.R. Acad. Sci. Paris 293:701–706.Google Scholar
  31. Fauchald, K., 1982, A eunicid polychaete from a white smoker, Proc. Biol. Soc. Wash. 95(4):781–787.Google Scholar
  32. Felbeck, H., 1981, Chemoautotrophic potentials of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera), Science 213: 336–338Google Scholar
  33. Felbeck, H., Childress, J. J., and Somero, G. N., 1981, Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats, Nature 293: 291–293.Google Scholar
  34. Francheteau, J., and Ballard, R. D., The East Pacific Rise near 21°N, 13°N and 20°S: Inferences for along-strike variability of axial processes of the Mid-Ocean Ridge, Earth Planet. Sci. Lett., (in press).Google Scholar
  35. Francheteau, J., Needham, D., Juteau, T., and Rongin, C., 1980, Naissance d’un ocean sur la borsale du Pacifique est, CYAMEX, Centre National pour l’Exploitation des Oceans, Paris.Google Scholar
  36. Fretter, V., Graham, A., and McLean, J. H., 1981, The anatomy of the Galapagos Rift limpet, Neomphalus fretterae, Malacologia 21:337–361.Google Scholar
  37. Galapagos Biology Expedition Participants: Grassle, J. F., Berg, C. J., Childress, J. J., Grassle, J. P., Hessler, R. R., Jannasch, H. W., Karl, D. M., Lutz, R. A., Mickel, T. J.Google Scholar
  38. Rhoads, D. C., Sanders, H. L., Smith, K. L., Somero, G. N., Turner, R. D., Tuttle, J. H., Walsh, P. J., and Williams, A. J., 1979, Galapagos ‘79: Initial findings of a biology quest, Oceanus 22 (2): 2–10.Google Scholar
  39. Giere, 0., 1981, The gutless marine oligochaete Phallodrilus leukodermatus. Structural studies on an aberrant tubificid associated with bacteria, Mar. Ecol. Prog. Ser. 5:353–357.Google Scholar
  40. Grassle, J. F., 1982, The biology of hydrothermal vents: a short summary of recent findings, MTS Jour. 16 (3): 33–38.Google Scholar
  41. Harwood, C. S., Jannasch, H. W., and Canale-Parola, E. 1982, Anaerobic spirochaete from a deep-sea hydrothermal vent, Appl. Environ. Microbiol. 44:234–237.Google Scholar
  42. Hessler, R., 1981, Oasis under the sea - where sulfur is the staff of life, New Scient. 10 December, pp. 741–747.Google Scholar
  43. Hiatt, B., 1980, Sulfides instead of sunlight, Mosaic 11 (4): 15–21.Google Scholar
  44. Humes, A., and Dojiri, M., 1980, A siphonostome copepod associated with a vestimentiferan from the Galapagos Rift and East Pacific Rise, Proc. Biol. Soc. Wash. 93(3):697–707.Google Scholar
  45. Jannasch, H. W., and Wirsen, C. 0., 1979, Chemosynthetic primary production of East Pacific sea floor spreading centers, Bioscience 29: 592–598.Google Scholar
  46. Jannasch, H., and Wirsen, C., 1981, Morphological survey of microbial mats near deep-sea thermal vents, App. Environ. Microbiol., 41:528–538.Google Scholar
  47. Jones, M. L., 1980, Riftia pachyptila a new genus, new species, the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora), Proc. Biol. Soc. Wash. 93(4):1295–1313.Google Scholar
  48. Jones, M. L., 1981, Riftia pachyptila Jones: some observations on the vestimentiferan worm from the Galapagos Rift, Science 213: 333–336.Google Scholar
  49. Karl, D., Wirsen, C., and Jannasch, H., 1980, Deep-sea primary production at the Galapagos hydrothermal vents, Science 207: 1345–1347.Google Scholar
  50. Killingley, J. S., Berger, W. H., MacDonald, K. C., and Newman, W. A., 1981, 180/160 variations in deep-sea carbonate shells from the Rise hydrothermal field, Nature 287: 218–221.Google Scholar
  51. Krantz, G. W., 1982, A new species of Copidognathus Trouessart (Acari:Actinedida:Halacaridae) from the Galapagos Rift, Can. Jour. Zool. 60:1728–1731.Google Scholar
  52. Lalou, C., and Brichet, E., 1981, Possibilites de datation des depots de sulfures metalliques hydrothermaux sous-marins par les descendants a vie courte de l’uranium et du thorium, C.R. Acad. Sci. Paris 293:821–826.Google Scholar
  53. Lalou, C., and Brichet, E., 1982, Ages and implications of East Pacific Rise sulphide deposits at 21°N, Nature 300: 169–171.Google Scholar
  54. Laubier, L., Desbruyères, D., and Chassard-Bouchaud, P., Evidence of sulfur accumulation in the epidermis of the polychaetes Alvinella pompejana from deep-sea hydrothermal vents, A micro-analytical study, Nature (in press).Google Scholar
  55. Liley, M. D., deAngelis, M. A., and Gordon, L. I., 1982, CH4, H2, CO and N20 in submarine hydrothermal vent waters, Nature 300: 48–50.Google Scholar
  56. Lonsdale, P., 1977, Clustering of suspension feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers, Deep-Sea Res. 24: 857–863.Google Scholar
  57. Lonsdale, P., Batiza, R., and Simkin, T., 1982, Metallogenesis at sea mounts on the East Pacific Rise, MTS Jour. 16 (3): 54–61.Google Scholar
  58. Lutz, R. A., 1982, Dissolution of molluscan shells of deep-sea hydrothermal vents, EOS, 63: 1014.Google Scholar
  59. Lutz, R. A., Jablonski, D., Rhoads, D. C., and Turner, R. D., 1980Google Scholar
  60. Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift, Mar. Biol. 57:127–133.Google Scholar
  61. Maciolek, N. J., 1981, Spionidae (Polychaeta, Annelida) from the Galapagos Rift geothermal vent, Proc. Biol. Soc. Wash. 94: 826–837.Google Scholar
  62. Malahoff, A., McMurtry, G. M., Wiltshire, J. C., and Yeh, H.-W., 1982, Geology and chemistry of hydrothermal deposits from active submarine volcano Loini, Hawaii, Nature 298: 234–239.CrossRefGoogle Scholar
  63. McDonald, K. C., Becker, K., Spiess, F. N., and Ballard, R. D., 1980, Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise, Earth Planet. Sci. Lett. 48(1980):1–7.Google Scholar
  64. McLean, J., 1981, The Galapagos Rift limpet Neomphalus: relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation, Malacologia 21: 291–336.Google Scholar
  65. Mickel, T. J., and Childress, J. J., 1982, Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent brachyuran crab, Bythograea thermydron (Brachyura), Biol. Bull., 162: 70–82.Google Scholar
  66. Mickel, T. J., and Childress, J. J., 1982, Effects of temperature, pressure and oxygen concentration on the oxygen consumption role of the hydrothermal vent crab Bythograea thermydron (Brachyura), Physiol. Zool. 55:199–207.Google Scholar
  67. Newman, W. A., 1979, A new scalpellid (Cirripedia): a Mesozoic relic living near an abyssal hydrothermal spring, Trans. San Diego Soc. Nat. Hist. 19:153–167.Google Scholar
  68. Normark, W. R., Lupton, J. E., Murray, J. W., Koski, R. A., Clague, D. A., Morton, J. L., DeLaney, J. R., and Johnson, M. P., 1982, Polymetallic sulfide deposits and water column tracers of active hydrothermal vents on the Southern Juan de Fuca Ridge, MTS Jour. 16 (3): 46–53.Google Scholar
  69. Powell, M. A., and Somero, G. N., 1983, Blood components prevent sulfide poisoning of respiration of the hydrothermal vent tube-worm Riftia pachyptila, Science 219:297–299.Google Scholar
  70. Pugh, P. R., A review of the Family Rhodalliidae (Siphonophora: Physonectae), Phil. Trans. Roy. Soc. B., (in press).Google Scholar
  71. Rau, G. H., 1981, Hydrothermal vent clam and tube worm 13C/12C: further evidence of non-photosynthetic food sources, Science 213: 338–340.Google Scholar
  72. Rau, G. H., 1981b, Low 15N/14N of hydrothermal vent animals: On-site N2 fixation and organic nitrogen synthesis?, Nature 289: 484–485.Google Scholar
  73. Rau, G. H., and Hedges, J. I., 1979, Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source, Science 203: 648–649.Google Scholar
  74. Rhoads, D. C., Lutz, R. A., Revelas, E. C., and Cerrato, R. M., 1981, Growth of bivalves of the deep-sea hydrothermal vents along the Galapagos Rift, Science 214: 911–913.Google Scholar
  75. Rhoads, D. C., Lutz, R. A., Cerrato, R. M., and Revelas, E. C., 1982, Growth and predation activity at deep-sea hydrothermal vents along the Galapagos Rift, Jour. Mar. Res. 40:503–516.Google Scholar
  76. Rise Project Group: Spiess, F. N.,Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Gurerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B.Google Scholar
  77. Macdougall, J. D., Miller, S., Normark, W., Orcutt, J., and Rangin, C., 1980, East Pacific Rise: Hot springs and geophysical experiments, Science 207: 1421–1433.Google Scholar
  78. Ruby, E. G., and Jannasch, H. W., 1982, Physiological characteristics of Thiomicrospira sp. Strain L-12 isolated from deep-sea hydrothermal vents, Jour. Bacteriol. 149:161–165.Google Scholar
  79. Ruby, E. G., Wirsen, C. O., and Jannasch, H. W., 1981, Chemolitho- trophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents, Appl. Environ. Microbiol. 42:317–324.Google Scholar
  80. Simoneit, B. R. T., and Lonsdale, P. F., 1982, Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin, Nature 295: 198–202.Google Scholar
  81. Smithey, W. M., Jr., and Hessler, R. R., Megafaunal distribution at deep-sea hydrothermal vents: an integrated photographic approach, in: “Underwater Photography for Scientists,” (in press).Google Scholar
  82. Southward, A. J., Southward, E. C., Dando, P. R., Rau, G. H., Felbeck, H., and Flügel, H., 1981, Bacterial symbionts and low C/13C i2atios in tissues of Pogonophora indicate unusual nutrition and metabolism, Nature 293: 616–620.Google Scholar
  83. Terwilliger, R. C., Terwilliger, N. B., and Schabtach, E., 1980, The structure of hemoglobin from an unusual deep-sea worm (Vestimentifera), Comp. Biochem. Physiol. 65B:531–535.Google Scholar
  84. Turekian, K. K., and Cochran, J. K., 1981, Growth rate of a vesicomyid clam from the Galapagos Spreading Center, Science 214: 909–911.Google Scholar
  85. Turekian, K., Cochran, J. K., and Nazaki, Y., 1979, Growth rate of a clam from the Galapagos Rise hot spring field using natural radionuclide ratios, Nature, 280: 385–387.CrossRefGoogle Scholar
  86. Turner, R. D., 1981, “Wood islands” and “thermal vents” as centers of diverse communities in the deep sea, Biologiya Morya 1: 3–10.Google Scholar
  87. Tuttle, J. H., Wirsen, C. O., and Jannasch, H. W., Microbial activities in the emitted hydrothermal waters of the Galapagos Rift vents, Mar. Biol. (in press).Google Scholar
  88. van Andel, T. H., and Ballard, R. D., 1979, The Galapagos Rift at 86°W: 2. Volcanism, structure, and evolution of the Rift Valley, Jour. Geophys. Res. 84(B10):5390–5406.Google Scholar
  89. van Praet, M., Regime alimentaire des Actinies, Bull. Soc. Zool. France (in press).Google Scholar
  90. Williams, A. B., 1980, A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea:Decapoda; Brachyura), Proc. Biol. Soc. Wash. 93(2):443–472.Google Scholar
  91. Williams, A. B., and Chase, F. A., 1982, Shrimp of the family Bresiliidae from thermal vents of the Galapagos Rift Crustacea: Decapoda: Caridae), Jour. Crust. Biol. 2(1):136–147.Google Scholar
  92. Williams, P. M., Smith, K. L., Druffel, E. M., and Linick, P. W., 1981, Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity, Nature 292: 448–449.Google Scholar
  93. Wittenberg, J. B., Morris, R. J., Gibson, Q. H., and Jones, M. L., 1981, Hemoglobin kinetics of the Galapagos Rift vent tube worm, Riftia pachyptila Jones (Pogonophora: Vestimentifera), Science 213: 344–346.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. Frederick Grassle
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations