Genesis of Ferromanganese Deposits: Hydrothermal Origin

  • Claude Lalou
Part of the NATO Conference Series book series (NATOCS, volume 12)


The recent discovery of active hydrothermal vents initiated a revolution in knowledge of the chemistry of the oceans and in the concept of a steady state ocean. The literature on known hydrothermal deposits, including metalliferous sediments, sulfides, barite, talc, iron silicates and manganese oxides is reviewed. Special consideration is given to studies of growth rates of manganese oxides in light of the new knowledge of hydrothermal processes.

The problem of the genesis of manganese nodules is also considered. It is shown that, owing to the flux of manganese presently delivered to the oceans by active hydrothermal vents, it is possible that the manganese forming the nodules has an hydrothermal origin. An hydrothermal source of manganese of the manganese nodules would answer such unresolved problems as why the nodules stay at the surface of sediments which accumulate at rates 1000 times faster than nodules are considered to form.


Hydrothermal Deposit Manganese Nodule East Pacific Rise Hydrothermal Origin Metalliferous Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard,P., Tazieff, H. and Dajlevic, D. (1979) Observation of sea floor spreading in Afar during the november 1978 fissure eruption. Nature 279, 30–33.Google Scholar
  2. Aoki,S., Koyama, N. and Sudo,T. (1974) An iron-rich montmorillonite in a sediment core from the northeastern Pacific. Deep Sea Res. 21, 865–875.Google Scholar
  3. ARCYANA. (1975) Transform fault and rift valley from bathyscaph and diving saucer. Science 190, 108–116. (1965)Google Scholar
  4. Arrhenius, G.and Bonatti, E. (1965) Neptunism and vulcanism in the ocean: In Progress in oceanography 3, Pergamon press, 7–22.Google Scholar
  5. Barnes, S.S. and Dymond, J.K. (1967) Rates of accumulation of ferromanganese nodules. Nature 213, 1218–1219Google Scholar
  6. Bender, M.L., Ku, T.L. and Broecker, W.S. (1966) Manganese nodules, their evolution. Science 151, 325–328.Google Scholar
  7. Bertine, K.K. (1974) Origin of Laue basin rise sediments. Geochim. Cosmochim. Acta 38, 629–640.Google Scholar
  8. Bertine, K.K. and Keene, J.B. (1975) Submarine barite opal rocks of hydrothermal origin. Science 188, 150–152.Google Scholar
  9. Bischoff, J.L., Piper, D.Z. and Quintero, P. (1979) Nature and origin of metalliferous sediments in Dome site C, Pacific manganese nodule province. In: Colloque Intern. CNRS, 289; C. Lalou Ed: Paris, 119–138.CrossRefGoogle Scholar
  10. Bischoff, J.L. and Rosenbauer, R.J. (1977) Recent metalliferous sediments in the North Pacific manganese nodule area. Earth. Planet. Sci. Lett. 33, 379–388.Google Scholar
  11. Bonatti, E. (1967) Mechanisms of deep sea volcanism in the South Pacific In: Researches in Geochemistry P.H. Abelson Ed. John Willey and Sons. 2, 453–491.Google Scholar
  12. Bonatti, E. (1975) Metallogenesis at oceanic spreading centers. Annual Rev. Earth. Planet.Sci. 3, 401–431.Google Scholar
  13. Bonatti, E. (1981) Metal deposits in the oceanic lithosphere. Chapt.17 In: The Sea vo 17, C. Emiliani Ed. John Wiley and Sons, 639–686.Google Scholar
  14. Bonatti, E., Fisher, D.E., Joensuu, O., Rydell, H.S. and Beyth, M. (1972) Iron manganese barium deposits from the northern Afar rift (Ethiopia). Econ. Geol. 67, 717–730.Google Scholar
  15. Bonatti, E., Guerstein-Honnorez, B.M. and Honnorez, J. (1976b) Coper-iron sulfide mineralizations from the equatorial mid-Atlantic ridge Econ. Geol. 71, 1515–1525.Google Scholar
  16. Bonatti, E., Guerstein-Honnorez, B.M., Honnorez, J. and Stern, C. (1976a) Hydrothermal pyrite concretions from the Romanche Trench (Equat. Atl). Metallogenesis in oceanic fracture zones. Earth Planet. Sc. Lett. 32, 1–10.Google Scholar
  17. Bonatti, E., Honnorez, J., Joensuu, 0. and Rydell H.S. (1972) Submarine iron deposits in the Mediterranean Sea. In: The Mediterranean Sea Stanley D.J. Ed. Dowden, Hutchinson and Ros Strondsberg Pennsylvania, 701–710.Google Scholar
  18. Bonatti, E. and Joensuu, 0. (1966) Deep sea iron deposit from the South Pacific. Science 154, 643–645.Google Scholar
  19. Bonatti, E., Kolla, V., Moore, W.S. and Stern, C. (1979) Metallogenesis in marginal basins: Fe-rich basal deposits from the Philippine Sea. Marine Geol 32, 21–37.Google Scholar
  20. Bonatti, E., Kraemer, T. and Rydell, H.S. (1972) Classification and genesis of submarine iron-manganese deposits. In: Ferromanganese deposits on the ocean floor. IDOE, Columbia Univ. N.Y. 149–166.Google Scholar
  21. Bonatti, E. and Nayudu, Y.R. (1965) The origin of manganese nodules on the ocean floor. Amer. Journ. Sc. 263, 17–39.Google Scholar
  22. Bonte, Ph. (1981) Relations entre l’environnement et les caractéristiques des concrétions polymétalliques marines dans la Fosse de La Romanche. Dr.Sc.Thesis Paris. Note CEA 2237, 245pp.Google Scholar
  23. Bonte, Ph., Lalou, C. and Latouche, C. (1980) Ferromanganese deposits in cores from the Kane and Atlantis fracture area: possible relationships with hydrothermalism. J. Geol. Soc. London. 137, 373–377.Google Scholar
  24. Borch, Van der C.C., Nesteroff, W.D. and Galehouse, J. (1971) Iron rich sediments cored during Leg VIII of Deep Sea Drilling Project. Initial Rept. DSDP US Govt Printing Off. VIII, $129–837.Google Scholar
  25. Borch, Van der C.C. and Rex, R.W. (1970) Amorphous iron-oxide precipitation in sediments cored during Leg V, DSDP. Initial. Rept. DSDP US Govt Print. Off., V, 541–544.Google Scholar
  26. Boström, K., Joensuu, 0., Valdes, S., Charm, W. and Glaccum, R. (1974) Geochemistry and origin of East Pacific sediments sampled during DSDP leg XXXIV. Init. Rept. DSDP US Govt Print. Off. XXXIV, 559–574Google Scholar
  27. Boström, K. Joensuu, 0., Valdes, S. and Riera, M. (1972) Geochemical history of South Atlantic ocean sediments since late Cretaceous. Marine. Geol. 12, 85–121.Google Scholar
  28. Boström, K., Kraemer, T. and Gartner, S. (1973) Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in pacific pelagic sediments. Chemical Geol. 11, 123–148.CrossRefGoogle Scholar
  29. Boström, K. and Peterson, M.N.A. (1966) Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ. Geol. 61, 1258–1265.Google Scholar
  30. Boström, K. and Peterson, M.N.A. (1969) Origin of aluminium poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geol. 7, 427–447.Google Scholar
  31. Boström, K., Peterson, M.N.A., Joensuu, O. and Fisher, D.E. (1969) Aluminium-poor ferromanganoan sediments on active ocean ridges. J. Geophys. Res. 74, 3261–3270.Google Scholar
  32. Boström, K. and Rydell, H. (1979) Geochemical behavior of U and Th during exhalative sedimentary processes. Coll. Intern. CNRS 289, C.Lalou Ed. CNRS Paris, 151–166.Google Scholar
  33. Burnett, C.and Piper, D.Z. (1977) Rapidly-formed ferromanganese deposit from the eastern Pacific Hess Deep. Nature 265, 596–600.Google Scholar
  34. Butuzova, G.Y. (1966) Iron-ore sediments of the fumarole field of Santorin volcano, their composition and origin. Dokl. Akad. Sci. USSR. Earth Science sect. 168, 215–217.Google Scholar
  35. Cann, J.R., Winter, C.K. and Pritchard, R.G. (1977) A hydrothermal deposit from the floor of the Gulf of. Aden. Mineral. Mag. 41, 193–199Google Scholar
  36. Castellarin, A. and Sartori, R. (1978) Quaternary iron manganese deposits and associated pelagic sediments (radiolarian clays and chert, gypsiferous mud) from Tyrrhenian sea. Sedimentology 25, 801–821Google Scholar
  37. Corliss, J.B., Lyle, M., Dymond, D.J. and Crane, M. (1978) The chemistry of hydrothermal mounds near the Galapagos rift. Earth Planet. Sci. Lett. 40, 12–24.Google Scholar
  38. Craig, H., and Lupton, J.E. (1981) Helium 3 and mantle volatiles in the ocean and the oceanic crust. In:The oceanic lithosphere C. Emiliani Ed. The Sea, vol.VII, John Wiley and Sons, 391–428.Google Scholar
  39. Crane, K. and Ballard, R.D. (1980) The Galapagos rift at 86°W: Structure and morphology of hydrothermal fields and their relationships to the volcanic and tectonic processes of the rift valley. Jour Geophys Res. 85, B-3, 1443–1454.Google Scholar
  40. Cronan, D.S. (1972) Basal ferrugineous sediments cored during Leg XVI DSDP.Init. Rept. DSDP. US Govt. Print. Off., 601–604.Google Scholar
  41. Cronan, D.S. (1972) The mid Atlantic ridge near 45°N, XVII. Al, As, Hg and Mn in ferrugineous sediments from the median valley. Canadian J. Earth. Sc. 9, 319–323.Google Scholar
  42. Cronan, D.S. and Garret, D.E. (1973) Distribution of elements in metalliferous Pacific sediments collected during DSDP. Nature Phys.Sc. 242, 88–89.Google Scholar
  43. Cronan, D.S., Glasby, G.P., Moorby, S.A., Thomson, G., Knedlar, K. and McDougall, J. (1982) A submarine hydrothermal manganese deposit from the SW Pacific Island arc. Nature 298, 456–458.Google Scholar
  44. Cronan, D.S., Rona, P.A. and Shearme, S. (1979) Metal enrichments in sediments from the TAG hydrothermal field. Marine Mining 2, 78–89.Google Scholar
  45. Cronan, D.S. and Varnavas, S.P. (1981) Hydrothermal and dissolution related geochemical variations in sediments from an East Pacific Rise fracture zone at 9°S. Coll. C4, Geologie des Oceans. Congrès Intern. Geol. Paris. Special Publ. Ocenologica Acta 4. 47–58.Google Scholar
  46. CYAMEX, équipe scientifique (1978) Découverte par submersibles de sulfures polymétalliques massifs sur la dorsale du Pacifique oriental par 21°N (Projet RITA). C.R. Acad. Sc. Paris 287, 1365–1368.Google Scholar
  47. Dash, E.J., Dymond, J.R. and Heath, G.R. (1971) Isotopic analysis of metalliferous sediments from the East Pacific Rise. Earth Planet.Sc. Lett. 13, 175–180.Google Scholar
  48. Degens, E.T. and Ross, D.A. (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer Verlag N.Y. Inc. 600 pp.Google Scholar
  49. Denis-Clocchiati, M., Leclaire, L. and Giannesini, P.J. (1979) Vitesse de croissance des nodules de manganèse dans l’océan Indien. In: Coll. Intern. CNRS, 289 C. Lalou, Ed. CNRS Paris, 241–250.Google Scholar
  50. Detrick, R.S., Williams, D.L., Mudie, J.D. and Sclater, J.C. (1974) The Galapagos spreading center: bottom water temperature and the significance of geothermal heating. Geophys. J. Roy.Astr. Soc. 38, 627–637.Google Scholar
  51. Devine, J.D. and Leinner, M. (1981) Chemistry of the massive sulfide deposits cored at site 471.Init. Rept. DSDP US. Gvt. Print. Off. LXIII, 679–681.Google Scholar
  52. Dreyer, J.I. (1971) Chemical and mineralogical studies, site 66. Init. Rept. DSDP US Gvt. Print.Off. VII (2) 965–976.Google Scholar
  53. Dymond, J., Corliss, J.B., Cobler, R., Muratli, C.M., Chou, C. and Conard, R. (1980) Composition and origin of sediments recovered by deep drilling of the sediment mounds, Galapagos spreading center. Init. Rept. DSDP US Gvt. Print. Off. LIV, 377–386.Google Scholar
  54. Dymond, J., Corliss, J.B. and Heath, G.R. (1977) History of metalliferous sediments, DSDP site 319 in the Southern Pacific. Geochim. Cosmochim. Acta. 41, 741–753.Google Scholar
  55. Dymond, J., Corliss, J., Heath, G.R., Field, C.W., Dasch, E.J. and Veeh, H.H. (1973) Origin of metalliferous sediments from the Pacific ocean. Geol.Soc. Amer. Bull. 84, 3355–3372.Google Scholar
  56. Dymond, J., Corliss, J.B. and Stillinger, R. (1976) Chemical composition and metal accumulation rates of metalliferous sediments from sites 319, 320B and 321.Init. Rept DSDP US Gvt. Print. Off. XXXIV, 575–588Google Scholar
  57. Dymond, J. and Veeh, H.H. (1975) Metal accumulation rates in the Southeast Pacific and the origin of metalliferous sediments. Earth Planet. Sc. Lett. 28, 13–22.Google Scholar
  58. Edmond, J.M. (1981) Hydrothermal activity at mid-ocean ridge axes. Nature 290, 87–88.Google Scholar
  59. Edmond, J.M., Von Damm, K.L., McDuff, R.E. and Measures, C.I. (1982) Chemistry of hot springs on the East Pacific rise and their effluent dispersal. Nature 297, 187–191.Google Scholar
  60. Ferguson, J. and Lambert, T.T.B. (1972) Volcanic exhalations and metal enrichments at Matupi Harbor, New Britain. TPNG. Econ. Geol. 67 25–27.Google Scholar
  61. Fisher, D.E. and Boström, K. (1969) Uranium rich sediments on the East Pacific rise. Nature 224, 64–65.Google Scholar
  62. Grill, E.V., Chase, R.L., Mac Donald, R.D. and Murray, J.W. (1981) A hydrothermal deposit from Explorer ridge in the northeast Pacific Earth Planet. Sci. Lett. 52, 142–150.Google Scholar
  63. Gundlach, H. and Beiersdorff, H. (1976) Heated bottom water and associated Mn/Fe oxide crusts from the Clarion fracture zone, SE of Hawaii. J.O.A. Edimburg (last abstracts)Google Scholar
  64. Halbach, P., Marchig, V., and Scherhag, C. (1980) Regional variations in Mn, Ni, Cu and Co of ferromanganese nodules from a basin in the Southeast Pacific. Marine Geol. 38, M1 - M9.CrossRefGoogle Scholar
  65. Heath, G.R. and Dymond, J. (1977) Genesis and transformation of metalliferous sediments from the East Pacific rise, Bauer Deep and central basin, Northwest Nacza plate. Geol. Soc. Amer. Bull. 88, 723–733.Google Scholar
  66. Hekinian, R., Fevrier, M., Bischoff, J.L., Picot, P. and Shanks, W.C. (1980) Sulfide deposits from the East Pacific rise near 21°N. Science 207, 1443–1444.Google Scholar
  67. Hoffert, M., Lalou, C., Brichet, E. and Bonte, Ph. (1975) Presence en Atlantique nord de nodules de manganèse à noyaux d’attapulgite et de phillipsite authigène.C.R. Acad. Sc. Paris 281, 231–233.Google Scholar
  68. Honnorez, J. (1969) La formation actuelle d’un gisement sous marin de sulfures fumerolliens à Vulcano (mer thyrrhénienne) Partie I: les minéraux sulfurés des tufs immergés à faible profondeur. Mineral. Deposit. 4, 114–131.Google Scholar
  69. Honnorez, J., Von Herzen, R.P., Barret, T.J., Becker, K., Bender, M.L., Borella, P.E., Hubberten, H.W., Jones, S.C., Karato, S., Laverne, C., Levi, S., Migdison, A.A., Moorby, S.A. andGoogle Scholar
  70. Schrader, E.L. (1981) Hydrothermal mounds and young ocean crust of the Galapagos: preliminary deep sea drilling results, leg LXX. Geol. Soc. Amer.Bull. 92, 457–472.Google Scholar
  71. Horowitz, A. and Cronan, D.S. (1976) The geochemistry of basal sediments from the north atlantic ocean. Marine Geol. 20, 205–228.Google Scholar
  72. Hosking, K.G.F. (1975) The sulfides of certain deep sea sediment samples collected on DSDP Leg XXXI. Init. Rept. DSDP US Gvt Print. Off. XXXI 515–517.Google Scholar
  73. Kidd, R.B. and Armannson, H. (1979) Manganese and iron micronodules from a volcanic seamount in the Tyrrhenian sea. J. Geol. Soc. London 136, 71–76.Google Scholar
  74. Klinkhammer, G.P. (1980) Observations of the distribution of manganese over the East Pacific rise. Chemical Geol. 29, 211–226.Google Scholar
  75. Krishnaswami, S., Somayajulu, B.L.K. and Moore, W.S. (1972) Dating of manganese nodules using beryllium 10. In: Horn Ed. Ferromanganese deposits on the oceans Papers from a conference held at Lamont Doherty Geological Obs. IDOE-NSF, 117–122.Google Scholar
  76. Ku, T.L. and Broecker, W.S. (1967) Uranium, thorium and protactinium in a manganese nodule. Earth Planet. Sc. Lett. 2, 317–320.Google Scholar
  77. Lalou, C. and Brichet, E. (1972) Signification des mesures radiochimiques dans l’évaluation de la vitesse de croissance des nodules de manganèse. C.R. Acad.Sc. Paris, 275, 815–818.Google Scholar
  78. Lalou, C. and Brichet, E. (1981) Possibilité de datation des dépôts de sulfures metalliques hydrothermaux sous-marins par les descendants à vie courte de l’uranium et du thorium. C.R. Acad.Sc. Paris 293, 821–826.Google Scholar
  79. Lalou, C. and Brichet, E. (1982) Ages and implications of East Pacific Rise sulphide deposits at 21°N. Nature 300, 169–171. 532 C. LALOUGoogle Scholar
  80. Lalou, C., Brichet, E. and Bonte, Ph. (1976) Some new data on the genesis of manganese nodules. 25th Intern.Geol.Congr. 3, 779–780.Google Scholar
  81. Lalou, C., Brichet,E. and Bonte, Ph. (1981) Some new data on the genesis of manganese nodules. In: Geology and geochemistry of Manganese Hungarian Acad of Sc. Publ. 31–90.Google Scholar
  82. Lalou, C., Brichet, E., Jehanno, C. and Leclaire, H. (1983). Hydrothermal manganese deposits from Galapagos mounds, DSDP leg LXX, Hole 509B and Alvin dives 729 and 721 Earth Planet. Sc.Lett. 63, 63–75.Google Scholar
  83. Lalou, C., Brichet, E., Ku, T.L.,and Jehanno, C. (1977) Radiochemical, scanning electron microscope (SEM) and X ray dispersive energy (EDAX) studies of a Famous hydrothermal deposit. Marine Geol. 24, 245–258.Google Scholar
  84. Lalou, C., Brichet, E., Leclaire, H. and Duplessy, J.C. (1983) Uranium series disequilibrium and isotope stratigraphy in hydrothermal mounds samples from DSDP sites 506–509, leg LXX and site 424, leg LIV: an attempt at chronology. Init. Rept. DSDP U.S. Govt. Print. Off. LXX 303–314.Google Scholar
  85. Lalou, C., Brichet, E., Poupeau, G., Romary, P and Jehanno, C. (1979) Growth rates and possible ages of a North Pacific manganese nodule. In:Marine geology and Oceanography of the Pacific manganese nodules province. J.L. Bischoff and D. Piper Ed. Plenum publ. Corp. 815–833.Google Scholar
  86. Lalou, C., Brichet, E. and Ranque, D. (1973) Certains nodules de manganèse trouvés en surface des sédiments sont-ils des formations contemporaines de la sédimentation ? C.R. Acad. Sc. Paris 276, 1661–1664.Google Scholar
  87. Lalou, C., Delibrias, G., Brichet, E. and Labeyrie, J. (1973) Existence de carbone 14 au centre de deux nodules de manganèse, ages C-14 et Th-230 de ces nodules. C.R. Acad. Sc. Paris 276, 3013–3015.Google Scholar
  88. Lonsdale, P. (1977) Clustering of suspension feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 84, 857–863.Google Scholar
  89. Lonsdale, P. (1979) A deep sea hydrothermal site on a strike slip fault Nature 281, 531–534.Google Scholar
  90. Lonsdale, P.F., Bischoff, J.L., Burns, V.M., Kastner, M. and Sweeney, R.E. (1980) A high temperature hydrothermal deposit on the seabed at the Gulf of California spreading center. Earth Planet. Sci. Let. 49, 8–20.Google Scholar
  91. Lonsdale, P., Burns, V.M. and Fisk, M. (1980) Nodules of hydrothermal birnessite in the caldera of a young sea-mount. Jour. Geol. 88, 611–618.Google Scholar
  92. Lupton, J.E., Klinkhammer, G.P., Normark, W.R., Haymon, R., MacDonald, K.C., Weiss, R.F. and Craig, H. (1980) Helium 3 and manganese at the 21°N East Pacific rise hydrothermal site. Earth Planet. Sc. Lett. 50, 115–127.Google Scholar
  93. Malahoff, A., Cronan, D.S., Skirrow, R. and Embly, W. (1982) Submarine hydrothermal mineralization from the Galapagos rift at 86°W. Marine Mining (in the press).Google Scholar
  94. Marchig, V.S. and Vallier, T.L. (1974) Geochemical studies of sediments and interstitial water, site 248 and 249, Leg XXV, DSDP. Init. Rept. US Govt. Print. Off. XXV, 405–415.Google Scholar
  95. Mc Murty, G.M. and Burnett, W.C. (1975) Hydrothermal metallogenesis in the Bauer Deep of the South eastern Pacific. Nature 254,. 42–44Google Scholar
  96. Mero, J.L. (1965) The mineral ressources of the sea. Elsevier oceanography series 312 pp.Google Scholar
  97. Moore, W.S. and Vogt, P.R. (1976) Hydrothermal manganese crust from two sites near the Galapagos spreading axis. Earth Planet. Sc. Lett. 29, 349–356.Google Scholar
  98. Murray, J. and Renard, A.F.(1891) Deep sea deposits. Rept. Sci. Results. Explor. voyage Challenger 525 pp.Google Scholar
  99. Natland, J.H. (1973) Basal ferromanganoan sediments at DSDP site 183, Aleutian abyssal plain and site 192, Meiji guyot, Northwest Pacific, Leg XIX. Init. Rept. DSDP US Govt. Print. Off. XIX, 629–636.Google Scholar
  100. Nayudu, Y.R. (1965) Petrology of submarine volcanics and sediments in the vicinity of the Mendocino fracture zone.Progress Oceanogr. 3, 207–220.Google Scholar
  101. Piper, D.Z. (1973) Origin of metalliferous sediments from the East Pacific Rise. Earth Planet. Sc. Lett. 19, 75–82.Google Scholar
  102. Piper,D.Z., Veeh, H.H., Bertrand, W.G. and Chase R.L. (1975) An iron rich deposit from the Northeast Pacific. Earth Planet. Sc. Lett. 26, 114–120.Google Scholar
  103. Rabaa, El M. and Basher, R.H.M. (1975) Replacement of coral reefs by manganese deposit. IX th Congrés Int. Sedim. Nice 9, 38–43.Google Scholar
  104. Reyss, J.L. and Lalou, C. (1981) Nodules and associated sediments in the Madagascar basin. Chemic. Geol. 34, 31–41.Google Scholar
  105. Reyss, J.L., Marchig, V. and Ku, T.L. (1982) Rapid growth of deep-sea manganese nodule. Nature 295, 401–403.Google Scholar
  106. RISE project group. (1980) East Pacific Rise: Hot springs and geophysical experiments. Science 207, 1421–1442.Google Scholar
  107. Rona, P.A. (1978) Criteria for recognition of hydrothermal mineral deposits in oceanic crust. Econ. Geol. 73–2–135–160.Google Scholar
  108. Rona, P.A. (1980) TAG hydrothermal field: Mid Atlantic ridge crest at latitude 26°N. Geol. Soc. London 137, 385–402.Google Scholar
  109. Rona, P.A., Harbison, R.N., Bassinger, B.G., Scott, R.B. and Nalwak, A.J. (1976) Tectonic fabric and hydrothermal activity of the Mid-Atlantic ridge crest (Lat. 26°N.) Geol Soc. Amer. Bull. 87, 661–674.Google Scholar
  110. Rossi, P.L., Bocchi, G. and Lucchini, F. (1980) A manganese deposit from the South Tyrrhenian region. Oceanologica Acta 3–1, 107–113.Google Scholar
  111. Sayles, F.L. and Bischoff J.L. (1973) Ferromanganoan sediments in the equatorial East Pacific.Earth Planet. Sci. Lett. 19, 330–336.Google Scholar
  112. Scott, M.R., Scott, R.B., Morse, J.W., Betzer, P.R., Butler, L.W., and Rona, P.A. (1978) Metal enriched sediments from the TAG hydrothermal field. Nature 276, 811–813.Google Scholar
  113. Scott, M.R., Scott, R.B., Rona, P.A., Butler, L.W. and Nalwak, A.J. (1974) Rapidly accumulating manganese deposit from the median valley of the Mid-Atlantic ridge. Geophys. Res. Lett. 1, 355–358.Google Scholar
  114. Stephens, J.D. and Wittkopp, R.W. (1969) Microscopic and electron beam microprobe study of sulfide minerals in Red Sea mud samples. In: Hot brines and recent hydrothermal deposits in the Red Sea. E.T. Degens and D.A. Ross Ed. Springer Verlag, N.Y. Inc. 441–447.Google Scholar
  115. Strakhov, N.M. and Nesterova, J.L. (1968) Effect of volcanism on the geochemistry of marine deposits in the sea of Okhotsk. Geochem.Intern. 5, 644–666.Google Scholar
  116. Thompson, G., Woo, C.C. and Sung, G.W. (1975) Metalliferous deposits on the Mid-Atlantic ridge. Abst. Geol. Soc. Amer. 7, 1297–1298.Google Scholar
  117. Toth, J.R. (1980) Deposition of submarine crusts rich in manganese and iron. Geol. Soc. Amer. Bull. 91, 44–54. Google Scholar
  118. Varentsov, I.M., Ryabushkin, D.A., Kazimirov, D.A., Koreneva, Y.E., Gendler, T.S., Udinstev, G.B., Gradusov, B.P., Chizhirova, N.N., Saidova, K.M., Belyayeva, N.V. and Dzhinoridze, R.N. (1980)Metalliferous sediments of the Iceland Plateau, North-Atlantic, geochemical characteristics of formation. Trans. from Geokhimya 10, 1528–1541 (Geochem. Intern. 140–153).Google Scholar
  119. Veeh, H.H. and Boström, K. (1971) Anomalous 234U/23 U on the East Pacific rise. Earth Planet. Sc. Lett. 10, 372–374.Google Scholar
  120. Warner, J.B. and Gieskes, J.M. (1974) Iron-rich basal sediments from the Indian Ocean: site 245 DSDP. Init.Rept. DSDP US Govt. Print. Off.XXV, 395–403.Google Scholar
  121. Weiss, R.F. (1977) Hydrothermal manganese in the deep-seaGoogle Scholar
  122. scavenging residence time and Mn/3He relationships. Earth Planet. Sc. Lett. 37, 257–262.Google Scholar
  123. Zelenof, K.K. (1965) Iron and manganese in exhalations of the submarine Banu Wuhu volcano (Indonesia). Doklady Akad. Nauk. SSR. 155, 1317–1320 (English translation, 94–96).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Claude Lalou
    • 1
  1. 1.Centre des Faibles RadioactivitésLaboratoire mixte CNRS-CEAGif sur YvetteFrance

Personalised recommendations