Skip to main content

Reduced Gases and Bacteria in Hydrothermal Fluids: The Galapagos Spreading Center and 21°N East Pacific Rise

  • Chapter
Hydrothermal Processes at Seafloor Spreading Centers

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

Hydrothermal fluids at the Galapagos Spreading Center (GSC) and at 21°N on the East Pacific Rise were enriched in methane, hydrogen and carbon monoxide by orders of magnitude over ambient bottom water. Nitrous oxide showed both enrichment and depletion in warm vent waters. Each GSC vent field exhibited unique dissolved gas to silica ratios indicating that complex source — sink mechanisms operated within a small geographic region. The CH4/3 He ratio at 21°N was 6.1 × 106 whereas at the GSC, a range of 12.4 to 42 × 106 was seen. At 21°N the H2/3 He ratio was on the order of 100 times that at the GSC. Microbial data showed as many as 109 organisms ml−1 in GSC samples and 105 ml−1 in the hot 21°N waters. These microbial communities are complex and include organisms known to produce and consume the gases discussed here. We conclude that microbial activity in the warm GSC vents is a significant contributing factor in determining the final gas concentrations in the vent waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aminuddin, M. and Nicholas, D. J. D., 1973, Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrif icans, Biochim. Biophys. Acta, 325:81–93.

    Google Scholar 

  • Arrhenius, G. (1981) Interaction of ocean-atmosphere with planetary interior. Adv. Space Res., 1: 37–48.

    Article  CAS  Google Scholar 

  • Ballard, R. D., van Andel, T. H. and Holcomb, R. T., 1982, The Galapagos Rift at 86°W 5. Variations in volcanism, structure, and hydrothermal activity along a 30–kilometer segment of the rift valley. J. Geophys. Res., 87: 1149–1161.

    Article  Google Scholar 

  • Baross, J. A., Lilley, M. D. and Gordon, L. I., 1982a, Is the CH4, I2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria ? Nature 298: 366–368.

    Article  CAS  Google Scholar 

  • Baross, J. A., Dahm, C. N., Ward, A. K., Lilley, M. D. and Sedell, J. R., 1982b, Initial microbial response in lakes to the Mt. St. Helens eruption. Nature 296: 49–52.

    Article  CAS  Google Scholar 

  • Baross, J. A., Lilley, M. D., Dahm, C. N., and Gordon, L. I., 1982c, Evidence for microbial linkages between CH+ and CO in aquatic environments. EOS, Trans. Am. Geophys.Union , 63: 155.

    Google Scholar 

  • Cicerone, R. J., Shetter, J. D., Stedman, D. H., Kelly, T. J. and Liu, S. C., 1978, Atmospheric N20: measurements to determine its sources, sinks, and variations. J. Geophys Res., 83: 3042–3050.

    CAS  Google Scholar 

  • Cohen, Y., 1977, Shipboard measurement of dissolved nitrous oxide in seawater by electron capture gas chromatography, Anal. Chem., 49: 1238–1240.

    Google Scholar 

  • Cohen, Y., 1978, Consumption of dissolved nitrous oxide in an anoxic basin, Saanich Inlet, British Columbia. Nature 272: 235–237.

    Article  CAS  Google Scholar 

  • Cohen, Y. and Gordon, L. I., 1978, Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. Deep-Sea Res. 25: 509–524.

    CAS  Google Scholar 

  • Cole, J. A., 1976, Microbial gas metabolism. Adv. Microbial Phys. 14: 1–92.

    Article  CAS  Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.

    CAS  Google Scholar 

  • Craig, H., Welhan, J. A., Kim, K., Poreda, R. and Lupton, J. E., 1980, Geochemical studies of the 21°N EPR hydrothermal fluids. EOS, Trans. Am. Geophys. Union 61: 992.

    Google Scholar 

  • Craig, H., 1981, Hydrothermal plumes and tracer circulation along the East Pacific Rise: 20°N to 20°S. EOS, Trans. Am. Geophys. Union 62: 893.

    Article  Google Scholar 

  • Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I. and Corliss, J. B., 1979a, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett., 46: 1–18.

    CAS  Google Scholar 

  • Edmond, J. M., Measures,C., Mangum, B., Grant, B., Sclater, F. R., Collier, R., Hudson, A., Gordon, L. I. and Corliss, J. B., 1979b, On the formation of metal-rich deposits at ridge crests. Earth Planet.Sci. Lett., 46: 19–30.

    Article  CAS  Google Scholar 

  • Edmond, J. M., Von Damm, K. L., McDuff, R. E. and Measures, C. I., 1982, Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297: 187–191.

    CAS  Google Scholar 

  • Fuchs, G., Thauer, R., Ziegler, H. and Stichler, W., 1979, Carbon isotope fractionation by Methanobacterium thermoautotrophium. Archiv. Microbiol. 120:135–139.

    Google Scholar 

  • Games, L. M., Hayes, J. M., and Gunsalus, R. P., 1978, Methane-producing bacteria: natural fractionations of the stable carbon isotopes. Geochim. Cosmochim. Acta, 42:1295–1297.

    Google Scholar 

  • Gerlach, T. M., 1980a, Evaluation of volcanic gas analyses from Kilauea volcano. J. Volcanol. Geotherm. Res., 1:295–317.

    Google Scholar 

  • Gerlach, T. M., 1980b, Evaluation of volcanic gas analyses from Surtsey volcano, Iceland, 1964–1967. J. Volcanol. Geotherm Res., 8:191–198.

    Google Scholar 

  • Gerlach, T. M. and Nordlie, B. E., 1975, The C-O-H-S gaseous system, part II: temperature, atomic composition, and molecular equilibria in volcanic gases. Am. J. Sci., 275: 377–394.

    Google Scholar 

  • Goering, J. J., 1978, Denitrification in marine systems. in: “Microbiology-1978”, D. Schlessinger, ed., American Society for Microbiology, Washington D.C. p. 357–361.

    Google Scholar 

  • Hallam, N. and Eugster, H. P., 1976, Ammonium silicate stability relations. Contrib. Miner. Petrol. 57:227–244.

    Google Scholar 

  • Jannasch, H. W. and Wirsen, C. O., 1979, Chemosynthetic primary production at East Pacific sea floor spreading centers. BioSci. 29: 592–598.

    CAS  Google Scholar 

  • Jannasch, H. W. and Wirsen, C. O., 1981, Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41: 528–538.

    CAS  Google Scholar 

  • Jenkins, W. J., Edmond, J. M. and Corliss, J. B., 1978, Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature 272: 156–158.

    CAS  Google Scholar 

  • Karl, D. M., Wirsen, C. O. and Jannasch, H. W., 1980, Deep-sea primary production at the Galapagos hydrothermal vents. Science 207: 1345–1347.

    CAS  Google Scholar 

  • Karl, D. M., Burns, D. J., and Orrett, K., 1983, Biomass and in situ growth characteristics of deep sea hydrothermal vent microbial communities, Abs. annual meeting Am. Soc. Microbiol. p. 235, Abs. N 69.

    Google Scholar 

  • LaZerte, B. D., 1981, The relationship between total dissolved carbon dioxide and its stable carbon isotope ratio in aquatic sediments. Geochim. Cosmochim. Acta, 45:647–656.

    Google Scholar 

  • Lilley, M. D. and Gordon, L. I., 1979, Methane, nitrous oxide, carbon monoxide, and hydrogen in the hydrothermal vents of the Galapagos Spreading Center. EOS, Trans. Am. Geophys. Union 60:863.

    Google Scholar 

  • Lilley, M. D., de Angelis, M. A. and Gordon, L. I., 1982, Methane, hydrogen, carbon monoxide and nitrous oxide in submarine hydrothermal vent waters. Nature 300: 48–50.

    CAS  Google Scholar 

  • Lupton, J. E., Weiss, R. F. and Craig, H., 1977, Mantle helium in hydrothermal plumes in the Galapagos Rift. Nature 267: 603–604.

    CAS  Google Scholar 

  • McDuff, R. E. and Edmond, J. M., 1982, On the fate of sulfate during hydrothermal circulation at mid-ocean ridges. Earth Planet. Sci. Lett., 57: 117–132.

    CAS  Google Scholar 

  • Rau, G. H., 1981a, Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food sources. Science 213: 338–339.

    CAS  Google Scholar 

  • Rau, G. H., 1981b, Low 15N/14N in hydrothermal vent animals: ecological implications. Nature 289: 484–485.

    CAS  Google Scholar 

  • Rau, G. H. and Hedges, J. I., 1979, Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science 203: 648–649.

    CAS  Google Scholar 

  • Richet, P., Bottinga, Y. and Javoy, M., 1977, A review of hydrogen, carbon, nitrogen, oxygen, sulfur and chlorine stable isotope fractionation among gaseous molecules. Ann. Rev. Earth Planet. Sci., 5: 65–110.

    Article  CAS  Google Scholar 

  • Rosenfeld, W. D. and Silverman, R. S., 1959, Carbon isotope fractionation in bacterial production of methane. Science 130: 1658–1659.

    CAS  Google Scholar 

  • Schink, D. R., Fanning, K. A. and Piety, J., 1966, A sea-bottom sampler that collects both bottom water and sediment simultaneously. J. Mar. Res., 24: 365–373.

    Google Scholar 

  • Schoell, M., 1980, The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta, 44:649–661.

    Google Scholar 

  • Welhan, J. A. and Craig, H., 1979, Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geophys. Res. Lett., 6: 829–831.

    Article  CAS  Google Scholar 

  • Williams, P. M., Smith, K. L., Druffel, E. M. and Linick, T. W., 1981, Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity. Nature 292: 448–449.

    CAS  Google Scholar 

  • Wolery, T. J. and Sleep, N. H., 1976, Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol., 84: 249–275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lilley, M.D., Baross, J.A., Gordon, L.I. (1983). Reduced Gases and Bacteria in Hydrothermal Fluids: The Galapagos Spreading Center and 21°N East Pacific Rise. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics