Methane, Hydrogen and Helium in Hydrothermal Fluids at 21°N on the East Pacific Rise

  • J. A. Welhan
  • H. Craig
Chapter
Part of the NATO Conference Series book series (NATOCS, volume 12)

Abstract

Methane in 350°C hydrothermal fluids at 21°N on the East Pacific Rise occurs in concentrations greater than 1.1 cc (STP)/kg. Hydrogen concentrations vary from 8 to 38 cc(STP)/kg, showing a considerable range between different vent fields. Helium concentrations exceed 0.021 cc(STP)/kg. The injection rates of methane and hydrogen into the deep ocean indicate replacement times of the order of 30 years, implying that consumption of methane and hydrogen in the water column must be very rapid. Variations of end-member concentrations of methane, hydrogen and possibly helium, as well as δ13C(CH4), among vent fields suggests either chemical control of reactive gas abundances and/or variations in gas contents of ridge crest basalts. Measurements of methane and helium in basalt glass from the EPR show CH4/3He ratios of 2.5 × 106, compared to 3.5 × 106 in hydrothermal fluid from the same area. Carbon isotope evidence, CO2 CH4 isotope geothermometry, the lack of suitable thermocatalytic sources of organic carbon, and the similarity between CH4/3He ratios in these hydrothermal fluids and mid-ocean ridge basalts, point to an abiogenic origin of hydrothermal methane, extracted directly from basalt by circulating seawater.

Keywords

Carbon Isotope Hydrogen Concentration Hydrothermal Fluid Methane Concentration Ambient Seawater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnasson, B., and Sigurgeirsson, T., 1968, Deuterium content of water vapor and hydrogen in volcanic gas at Surtsey, Iceland, Geochim. Cosmochim. Acta, 32:797.Google Scholar
  2. Ballard, R. D., Francheteau, J., Juteau, T., Rangan, C., and Normark, W., 1981, East Pacific Rise at 21°N: the volcanic, tectonic and hydrothermal processes of the central axis, Earth Planet. Sci. Lett., 55: 1.Google Scholar
  3. Chaigneau, M., Hekinian, R., and Cheminee, J. L., 1980, Magmatic gases extracted and analyzed from ocean floor volcanics, Bull. Volcanol. 43:241.Google Scholar
  4. Chamberlin, R. T., 1908, The gases in rocks, Carnegie Inst. Wash. Publ., 106: 1.Google Scholar
  5. Clarke, W. B., Beg, M. A., and Craig, H., 1969, Excess Hé in the sea: evidence for terrestrial primordial helium, Earth Planet. Sci. Lett., 6: 213.Google Scholar
  6. Claypool, G. E., and Kaplan, I. R., 1974, The origin and distribution of methane in marine sediments, in: “Natural Gases in Marine Sediments”, I. R. Kaplan, ed., Plenum Press, New York.Google Scholar
  7. Craig, H., 1953, The geochemistry of the stable carbon isotopes, Geochim. Cosmochim. Acta, 3:53.Google Scholar
  8. Craig, H., 1963, The isotopic geochemistry of water and carbon in geothermal areas, in: “Proc. Spoleto Conference on Nuclear Geology”, E. Tongiorgi, ed., Spoleto, Italy.Google Scholar
  9. Craig, H., 1981, Hydrothermal plumes and tracer circulation along the East Pacific Rise: 20°N to 20°S, Trans. Am. Geophys. Union (EOS) 62:893.Google Scholar
  10. Craig, H., Clarke, W. B., and Beg, M. A., 1975, Exces in deep water on the East Pacific Rise, Earth Planet. Sci. Lett., 26: 125.Google Scholar
  11. Craig, H., and Lupton, J. E., 1976, Primordial neon, helium and hydrogen in oceanic basalts, Earth Planet. Sci. Lett., 31: 369.Google Scholar
  12. Craig, H., Welhan, J. A., Kim, K., Poreda, R., and Lupton, J. E., 1980, Geochemical studies of the 21°N EPR hydrothermal fluids, Trans. Am. Geophys. Union (EOS), 61:992.Google Scholar
  13. Craig, H., Weiss, R. F., and Clarke, W. B., 1967, Dissolved gases in the equatorial and South Pacific Ocean, J. Geophys. Res., 72: 6165.CrossRefGoogle Scholar
  14. DesMarais, D. J., Donchin, J. H., Nehring, N. L., and Truesdell, A. H., 1981, Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons, Nature, 292: 826.CrossRefGoogle Scholar
  15. Dubrova, N. V., and Nesmelova, Z. N., 1968, Carbon isotope composition of natural methane, Geochem. Int. 5: 872.Google Scholar
  16. East Pacific Rise Study Group, 1981, Crustal processes of the mid-ocean ridge, Science, 213: 31.CrossRefGoogle Scholar
  17. Edmond, J. M., Measures, C., McDuff, R., Chan, L. H., Collier, R., and Grant, B., 1979, Ridge crest hydrothermal activity and balances of the major and minor elements in the oceans: the Galapagos data, Earth Planet. Sci. Lett., 46: 1.Google Scholar
  18. Gold, T., 1979, Terrestrial sources of carbon and earthquake outgassing, J. Petrol. Geol., 1: 3.CrossRefGoogle Scholar
  19. Gunter, B. D., and Musgrave, B. C., 1971, New evidence on the origin of methane in hydrothermal gases, Geochim. Cosmochim. Acta, 35:113.Google Scholar
  20. Hekinian, R., Chaigneau, M., and Cheminee, J. L., 1973, Popping rocks and lava tubes from the Mid-Atlantic rift valley at 36°N, Nature, 245: 371.CrossRefGoogle Scholar
  21. Hulston, J. R., and McCabe, W. J., 1962, Mass spectrometer measurements in the thermal areas of New Zealand, Part 2. Carbon isotope ratios, Geochim. Cosmochim. Acta, 26:399.Google Scholar
  22. Lupton, J. E., and Craig, H., 1975, Excess 3He in oceanic basalts: evidence for terrestrial primordial helium, Earth Planet. Sci. Lett. 26: 133.Google Scholar
  23. Lupton, J. E., Weiss, R. F., and Craig, H., 1977, Mantle helium in hydrothermal plumes in the Galapagos Rift, Nature, 267: 603.CrossRefGoogle Scholar
  24. Lupton, J. E., Klinkhammer, G. P., Normark, W. R., Haymon, R., MacDonald, K. C., Weiss, R. F., and Craig, H., 1980, Helium-3 and manganese at the 21°N East Pacific Rise hydrothermal site, Earth Planet. Sci. Lett., 50: 115.Google Scholar
  25. Moore, J. G., Batchelder, J. N., and Cunningham, C. G., 1977, CO2-filled vesicles in mid-ocean basalt, J. Volcanol. Geothermal Res. 2:309.Google Scholar
  26. Pineau, F., Javoy, M., and Bottinga, Y., 1976, 13C/ 12C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic Ridge, Earth Planet. Sci. Lett., 29: 413.Google Scholar
  27. Richet, P., Bottinga, Y., and Javoy, M., 1977, A review of hydrogen, carbon, nitrogen, oxygen, sulfur, chlorine stable isotope fractionation among gaseous molecules, Ann. Rev. Earth Planet. Sci., 5:65.Google Scholar
  28. RISE Project Group, 1980, East Pacific Rise: hot springs and geophysical experiments, Science, 207: 1421.CrossRefGoogle Scholar
  29. Roedder, E., 1972, The composition of fluid inclusions, U.S. Geol. Survey Prof. Paper 440-JJ.Google Scholar
  30. Sackett, W. M., 1978, Carbon and hydrogen isotope effects during thermocatalytic production of hydrocarbons in laboratory simulation experiments, Geochim. Cosmochim. Acta, 42:571.Google Scholar
  31. Schoell, M., 1980, The hydrogen and carbon isotopic composition of methane from natural gases of various origins, Geochim. Cosmochim. Acta, 44:649.Google Scholar
  32. Seiler, W., and Schmidt, U., 1974, Dissolved nonconservative gases in seawater, in: “The Sea”, Volume 5, E. D. Goldberg, ed., J. Wiley and Sons, New York.Google Scholar
  33. Stahl, W. J., 1977, Carbon and nitrogen isotopes in hydrocarbon research and explora-tion, Chem. Geology 20: 121.CrossRefGoogle Scholar
  34. Styrt, M. M., Brackmann, A. J., Holland, H. D., Clark, B. C., Pisutha-Arnond, V., Elridge, C. S., and Ohmoto, H., 1981, The mineralogy and the isotope composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude, Earth Planet. Sci. Lett., 53: 382.Google Scholar
  35. Weiss, R. F., 1970, The solubility of nitrogen, oxygen and argon in water and seawater, Deep Sea Res., 17: 721.Google Scholar
  36. Weiss, R. F., 1971, Solubility of helium and neon in water and seawater, J. Chem. Eng. Data 16:235.Google Scholar
  37. Weiss, R. F., Lonsdale, P., Lupton, J. E., Bainbridge, A. E., and Craig, H., 1977, Hydrothermal plumes in the Galapagos Rift, Nature, 267: 600.CrossRefGoogle Scholar
  38. Welhan, J. A., 1980, Gas concentrations and isotope ratios at the 21°N EPR hydrothermal site, Trans. Am. Geophys. Union (EOS), 61:996.Google Scholar
  39. Welhan, J. A., 1981, Carbon and hydrogen gases in hydrothermal systems: the search for a mantle source, Ph.D. thesis, University of California at San Diego, 195 pp.Google Scholar
  40. Welhan, J. A., and Craig, H., 1979, Methane and hydrogen in East Pacific Rise hydrothermal fluids, Geophys. Res. Lett., 6:829.Google Scholar
  41. Welhan, J. A., and Craig, H., 1982, Abiogenic methane in mid-ocean ridge hydrothermal fluids, in: “Proc. Deep Source Gas Workshop”, W. J. Gwilliam, ed., Morgantown, West Virginia.Google Scholar
  42. Welhan, J. A., Poreda, R., Lupton, J. E., and Craig, H., 1980, Gas chemistry and helium isotopes at Cerro Prieto, Geothermics 8: 241.Google Scholar
  43. Williams, P. M., Smith, K. L., Druffel, E. M., and Linick, T. W., 1981, Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity, Nature, 292: 448.CrossRefGoogle Scholar
  44. Zolotarev, G. I., Voytov, I. S., Sarkisyan, I. S., and Cherevichnaya, L. F., 1981, Doklady Akad. Nauk SSSR, Earth Sci. Sec., 243: 207.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. A. Welhan
    • 1
  • H. Craig
    • 1
  1. 1.Isotope Laboratory, Scripps Institution of OceanographyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations