Advertisement

Basalt — Seawater Interaction

  • Geoffrey Thompson
Chapter
Part of the NATO Conference Series book series (NATOCS, volume 12)

Abstract

The upper part of the igneous oceanic basement consists of basaltic lava. This basalt undergoes reaction with seawater over a range of temperatures, time and locale. This reaction is a major source and sink for various ions in seawater, and is a major process in buffering seawater composition and forming metalliferous ores in the marine environment.

The nature of the chemical reaction and the fluxes of ions exchanged between the oceans and the igneous basement are mostly dependent on the temperature of reaction and the relative proportion of the reactants. These vary in respect to the location of the water circulation and distance from the heat source. Four examples of seawater-basalt interactions are considered and the net exchange fluxes are calculated; these examples cover the range of temperature and water:rock ratios typically found in the ocean floor.

Low temperature, high water:rock ratio is typical of the exchange in the upper few meters of the oceanic basement. Only about 0.1% of new oceanic crust undergoes this reaction which extends over a time period of tens of millions of years. The annual fluxes produced are not very large. Low temperature, low water:rock ratio is typical of the reaction in the deeper parts of the oceanic basement. About 8% of newly formed oceanic crust can be expected to undergo this reaction over a period of a few million years. Reactions and fluxes on the flanks of spreading centers are at moderate temperatures and water:rock ratios. These reactions are relatively short lived, but the fluxes produced are quite high. High temperature reaction of seawater and basalt (in excess of 100°C) takes place at spreading centre axes. These reactions are fast but result in very high fluxes and formation of polymetallic sulfides or iron and manganese oxides. The products of this reaction and the direction of exchange for some ionic species are quite different compared to the lower temperature reactions.

The net effect of the basalt-seawater exchange is the sum of all the reacton fluxes over the full temperature range. This calculated net flux indicates that the basalt is a source for ions such as Si, Ca, Ba, Li, Fe, Mn, Cu, Ni, Zn and hydrogen ions. It also is the sink for ions such as Mg, K, B, Rb, H2O, Cs and U. The annual fluxes calculated for some of these species is of the same order of magnitude as the annual river influxes into the ocean.

Keywords

Oceanic Crust Chemical Exchange Spreading Center Oceanic Basalt Deep Drill Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. N., M. A. Hobart, and M. G. Langseth, 1979: Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science 204, 828–832.Google Scholar
  2. Andrews, A. J., 1977: Low temperature fluid alteration of oceanic layer 2 basalts, DSDP Leg 37. Can. J. Earth Sci. 14, 911–926.Google Scholar
  3. Andrews, A. J., 1978: Petrology and geochemistry of alteration in layer 2 basalts, DSDP Leg 37. Ph. D. Thesis, Univ. of Western Ontario, London, Canada. 327 pp.Google Scholar
  4. Aumento, F., and B. Loncarevic, 1969: The Mid-Atlantic Ridge near 45°N. III. Bald Mountain. Can. J. Earth Sci. 6, 11–23.Google Scholar
  5. Aumento, F., B. Loncarevic, and D. I. Ross, 1971: Hudson geotraverse: Geology of the mid-Atlantic ridge at 45°N. Phil. Trans. Roy. Soc. London A 268, 623–650.Google Scholar
  6. Baragar, W. R. A., A. G. Plant, G. J. Pringle, and M. Schau, 1979: Diagenetic and postdiagenetic changes in the composition of an Archean pillow. Can. J. Earth Sci. 16 (II), 2102–2121.Google Scholar
  7. Bass, M. N., R. Moberly, J. M. Rhodes, C. Y. Shih, and S. E. Church, 1973: Volcanic rocks cored in the central Pacific, Leg 17, Deep Sea Drilling Project. In: Initial Reports of Deep Sea Drilling Project 17, 429–503. U. S. Gov’t. Printing Office.Google Scholar
  8. Bass, M. N., 1975: Secondary minerals in oceanic basalts. In: Ann. Rept. Dept. Terr. Magnetism-Carnegie Inst. Year Book 74, 234–240.Google Scholar
  9. Bass, M. N., 1976: Secondary minerals in oceanic basalt, with special reference to Leg 34, Deep Sea Drilling Project. In: Initial Reports of Deep Sea Drilling Project 34, 393–432. U. S. Gov’t. Printing Office.Google Scholar
  10. Bogdanov, Y. A. and V. Ploshko, 1968: Igneous and metamorphic rocks from the abyssal Comanche Depression. Dokl. Akad. Nauk SSSR 177. 173–176.Google Scholar
  11. Böhlke, J. K., J. Honnorez, and B. H. Honnorez-Guerstein, 1980: Alteration of basalts from site 396B, DSDP: Petrographic and mineralogic studies. Contrib. Mineral. Petrol. 73, 341–364.Google Scholar
  12. Bonatti, E., 1965: Palagonite, hyaloclastites and alteration of volcanic glass in the ocean. Bull. Volcanol. 28, 257–269.Google Scholar
  13. Bonatti, E., 1970: Deep sea volcanism. Naturwiss. 57, 379–384.Google Scholar
  14. Bonatti, E., J. Honnorez, and G. Ferrara, 1971: Peridotite-gabbro-basalt complex from the equatorial Mid-Atlantic Ridge. Phil. Trans. Roy. Soc. London A 268, 385–402.Google Scholar
  15. Bonatti, E., J. Honnorez, P. Kirst, and F. Radicati, 1975: Metagabbros from the Mid-Atlantic Ridge at 6°N: contact-hydrothermal-dynamic metamorphism beneath the axial valley. J. Geol. 83, 61–78.Google Scholar
  16. Broecker, W. S., 1971: A kinetic model for the chemical composition of sea-water. Quat. Res. 1, 188–207.Google Scholar
  17. Byerly, G. R. and J. M. Sinton, 1979: Compositional trends in natural basaltic glasses from Deep Sea Project Holes 417D and 418A. In: Initial Reports of the Deep Sea Drilling Project, 51–53 Part 2, 957–971. U. S. Gov’t. Printing Office.Google Scholar
  18. Cann, J. R., 1969: Spilites from the Carlsberg Ridge, Indian Ocean. J. Petrol. 10 (I), 1–19.Google Scholar
  19. Cann, J. R., 1971: Petrology of basement rocks from the Palmer Ridge, NE Atlantic. Phil. Trans. Roy. Soc. London A 268, 605–618.CrossRefGoogle Scholar
  20. Cann, J. R., 1979: Metamorphism in the ocean crust. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust, 230–238. Talwani, M., C. G. Harrison, and D. E. Hayes (Eds.) Amer. Geophys. Union, Maurice Ewing Series 2.Google Scholar
  21. Cann, J. R., 1980: Availability of sulfide ores in the oceanic crust. J. Geol. Soc. 137, 381–384.Google Scholar
  22. Cann, J. R., and B. Funnell, 1967: Palmer Ridge: a section through the upper part of the ocean crust. Nature 213, 661–664.Google Scholar
  23. Chapman, H. J., and E. T. C. Spooner, 1977: 87Sr enrichment of ophiolite sulphide deposits in Cyprus confirms ore formation by circulating seawater. Earth Planet. Sci. Letters 35, 71–78.Google Scholar
  24. Chernyseva, V. I., 1971: Greenstone altered rocks of rift zones in median ridges of Indian Ocean. Int. Geol. Rev., 13, 903–913.Google Scholar
  25. Corliss, J. B., 1971: The origin of metal-bearing submarine hydrothermal solutions. J. Geophys. Res., 76, 8128–8138.Google Scholar
  26. Corliss, J. B., L. I. Gordon, and J. M. Edmond, 1979: Some implications of heat/mass ratios in Galapagos rift hydrothermal fluids for models of seawater-rock interaction and the formation of oceanic crust. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust 391–402.Google Scholar
  27. Talwani, M., C. G. Harrison, and D. E. Hayes (Eds.). Amer. Geophys. Union, Maurice Ewing Series 2.Google Scholar
  28. Craig, H., W. G. Clarke, and M. A. Beg, 1975: Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Letters 26, 125–132.Google Scholar
  29. Craig, H., J. A. Welham, K. Kim, R. Poreda, and J. E. Lupton, 1980: Geochemical studies of 21°N EPR hydrothermal fluids. EOS, 61, 992.Google Scholar
  30. Deffeyes, K. S., 1970: The axial valley: a steady state feature of the terrain. In: Megatectonics of Continents and Oceans 194–222. Johnson, H., and B. L. Smith (Eds.) Rutgers Univ. Press.Google Scholar
  31. Delaney, J. R., D. W. Mogk, and M. J. Mottl, 1980: High temperature, sulfide bearing hydrothermal system on the mid-Atlantic ridge at 23.6°N. Geol.-Soc. Amer. Ann. Mtg., 12, 411 (Abstract).Google Scholar
  32. Delaney, J. R., D. W. Mogk, and M. J. Mottl, 1981: Quartz-cemented greenstone breccias - samples of high temperature hydrothermal fluid flow channels from the mid-Atlantic ridge. Abstr. Amer. Geophys. Union Chapman Conf., Airlie, VA.Google Scholar
  33. Donnelly, T. W., G. Thompson, and M. H. Salisbury, 1979a: The chemistry of altered basalts at site 417, Deep Sea Drilling Project Leg 51. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1319–1330. U. S. Gov’t Printing Office.Google Scholar
  34. Donnelly, T. W., G. Thompson, and P. T. Robinson, 1979b: Very-low-temperature hydrothermal alteration of the oceanic crust and the problem of fluxes of potassium and magnesium. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust, 369–382. Talwani, M., C. G. Harrison, and D. E. Hayes (Eds.) Amer. Geophys. Union, Maurice Ewing Series 2.Google Scholar
  35. Donnelly, T. W., R. A. Pritchard, R. Emmerman, and H. Puchelt, 1979c: The aging of oceanic crust: synthesis of the mineralogical and chemical results of Deep Sea Drilling Project, Legs 51 through 53. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1563–1577. U. S. Gov’t Printing Office.Google Scholar
  36. Dreyer, J. I., 1971: Early diagenesis of clay minerals, Rio Ameca Basin, Mexico. J. Sediment. Petrol. 41, 982–994.Google Scholar
  37. Dreyer, J. I., 1974: The magnesium problem. In: The Sea 5, 337–357, Goldberg, E. J., Ed. Wiley, N. Y.Google Scholar
  38. Edmond, J. M., 1980: Ridge crest hot springs: the story so far. EOS, 61 (2), 129–131.CrossRefGoogle Scholar
  39. Edmond, J. M., 1981: Hydrothermal activity at mid-ocean ridge axes. Nature 290 (5802), 87–88.Google Scholar
  40. Edmond, J. M., C. Measures, R. E. McDuff, L. H. Chan, R. Collier, B. Grant, L. I. Gordon, and J. B. Corliss, 1979a: Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet Sci. Letters 46, 1–18.Google Scholar
  41. Edmond, J. M., C. Measures, B. Mangum, B. Grant, F. R. Sciater, R. Collier, A. Hudson, L. I. Gordon, and J. B. Corliss, 1979b: On the formation of metal-rich deposits at ridge crests. Earth Planet. Sci. Letters 46, 19–30.Google Scholar
  42. Edmond, J. M., J. B. Corliss, and L. I. Gordon, 1979c: Ridge crest-hydrothermal metamorphism at the Galapagos spreading center and reverse weathering. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust 383–390. Talwani, M., C. G. Harrison, and D. E. Hayes, (Eds.) Amer. Geophys. Union, Maurice Ewing Series 2.Google Scholar
  43. Edmond, J. M., K. vonDamm, and R. E. McDuff, and C. I. Measures, 1981: Chemistry of hot springs on the East Pacific Rise and their effluent dispersal (a review). Nature 297 (5863), 187–191.Google Scholar
  44. Frey, F. A., W. B. Bryan, and G. Thompson, 1974: Atlantic Ocean floor: geochemistry and petrology of basalts from Legs 2 and 3 of the Deep Sea Drilling Project. J. Geophys. Res. 79, 5507–5527.Google Scholar
  45. Garlick, G. D., and J. R. Dymond, 1970: Oxygen isotope exchange between volcanic materials and ocean water. Geol. Soc. Amer. Bull., 81, 2137–2142.Google Scholar
  46. Garrels, R. M., and F. T. Mackenzie, 1971:. Evolution of Sedimentary Rocks Norton, N. Y. 394 p.Google Scholar
  47. Gibbs, R. J., 1972: Water chemistry of the Amazon River. Geochim. Cosmochim. Acta 36, 1061–1066.Google Scholar
  48. Goldberg, E. G., 1957: Biogeochemistry of trace metals. In: Treatise on Marine Ecology and Paleoecology. Ed. J. W. Hedgepath, Geol. Soc. Amer. Mem., 67, 345–357.Google Scholar
  49. Hart, R. A., 1970: Chemical exchange between sea-water and deep ocean basalts. Earth Planet. Sci. Letters 9, 269–279.Google Scholar
  50. Hart, R. A., 1973: A model for chemical exchange in the basalt-seawater system of oceanic layer II. Can. J. Earth Sci., 10, 799–816.Google Scholar
  51. Hart, R. A., 1976: Progressive alteration of the oceanic crust. In: Initial Reports of the Deep Sea Drilling Project 34, 433–437. U. S. Gov’t Printing Office.Google Scholar
  52. Hart, S. R., 1969: K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. Earth Planet. Sci. Letters, 6, 295–303.Google Scholar
  53. Hart, S. R., 1971: K, Rb, Cs, Sr and Ba contents and Sr isotope ratios of ocean floor basalts. Phil. Trans. Roy. Soc. London A 268, 573–587.Google Scholar
  54. Hart, S. R., and A. M. Nalwalk, 1970: K, Rb, Cs and Sr relationships in submarine basalts from the Puerto Rico Trench. Geochim. Cosmochim. Acta 34, 145–156.Google Scholar
  55. Hart, S. R., and H. Staudigel, 1978: Oceanic crust: age of hydrothermal alteration. Geophys. Res. Letters 5, 1009–1012.Google Scholar
  56. Hart, S. R., and H. Staudigel, 1982: The control of alkalies and uranium in sea water by ocean crust alteration. Earth Planet. Sci. Letters 58 (2) 202–212.CrossRefGoogle Scholar
  57. Hay, R. L., and A. Iijima, 1968a: Petrology of palagonite tuffs of Koko Craters, Oahu, Hawaii. Contrib. Mineral. Petrol. 17, 141–154.Google Scholar
  58. Hay, R. L., and A. Iijima, 1968b: Nature and origin of palagonite tuffs of the Honolulu Group on Oahu, Hawaii. Geol. Soc. Amer. Mem. 116, 331–376.CrossRefGoogle Scholar
  59. Hekinian, R., 1968: Rocks from the mid-oceanic ridge in the Indian Ocean. Deep-Sea Res. 15, 195–213.Google Scholar
  60. Hekinian, R., 1971: Chemical and mineralogical differences between abyssal hill basalts and ridge tholeiites in the Eastern Pacific Ocean. Mar. Geol. 11, 77–91.Google Scholar
  61. Hekinian, R., and F. Aumento, 1973: Rocks from the Gibbs Fracture Zone and the Minia Seamount near 53°N in the Atlantic Ocean. Mar. Geol., 14, 47–72.Google Scholar
  62. Henrichs, S., and G. Thompson, 1976: The low temperature weathering of oceanic basalts by seawater: 2. trace element fluxes. Geol. Soc. Amer. Ann. Mtg. 6, 1098.Google Scholar
  63. Holland, H. D., 1965: The history of ocean water and its effect on the chemistry of the atmosphere. Proc. Natl. Acad. Sci., 53, 1173–1183.CrossRefGoogle Scholar
  64. Holland, H. D., 1972: The geologic history of seawater - an attempt to solve the problem. Geochim. Cosmochim. Acta 36, 637–657.Google Scholar
  65. Holland, H. D., 1978: The Chemistry of the Atmosphere and Oceans. J. Wiley, N. Y., 351 pp.Google Scholar
  66. Honnorez, J., 1967: La palagonitization: l’alteration sous-marine du verre volcanique basique de Palagonia (Sicile). Ph. D. Thesis, Univ. of Bruxelles.Google Scholar
  67. Honnorez, J., 1972: La palagonitization: l’alteration sous-marine du verre volcanique basique de Palagonia (Sicile). Vulkaninstitut I. Friedl. Zurich, 9, 1–132.Google Scholar
  68. Honnorez, J., 1981: The aging of the oceanic crust at low temperature. In: The Oceanic Lithosphere. Ed. Emiliani, E. The Sea, 7, 525–587. J. Wiley, N. Y.Google Scholar
  69. Honnorez, J., J. K. Bohlke, B. M. Honnorez-Guerstein, 1978: Petrographical and geochemical study of the low temperature submarine alteration of basalt from Hole 396B, Leg 46. In: Initial Reports of the Deep Sea Drilling Program 46, 299–329. U. S. Gov’t. Printing Office.Google Scholar
  70. Humphris, S. E. and G. Thompson, 1978a: Hydrothermal alteration of oceanic basalts by seawater. Geochim. et Cosmochim. Acta, 42, 107–125.Google Scholar
  71. Humphris, S. E. and G. Thompson, 1978b: Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. et Cosmochim. Acta 42, 127–136.Google Scholar
  72. Humphris, S. E., R. N. Thompson, and G. F. Marriner, 1979: The mineralogy and geochemistry of basalt weathering, Holes 417A and 418A. In: Initial Reports of the Deep Sea Drilling Project, 51–53 1201–1217. U. S. Gov’t Printing Office.Google Scholar
  73. Ito, E., 1979: High temperature metamorphism of plutonic rocks from the mid-Cayman Rise: a petrographic and oxygen isotopic study. Ph.D. Thesis, Univ. of Chicago, Ill.Google Scholar
  74. Jakobsson, S. P., 1972: On the consolidation and palagonitization of the Tephra of Surtsey Volcanic Island, Iceland. Mus. Natl. Hist. Reykjavik Papers 60, 1–8.Google Scholar
  75. Jakobsson, S. P., 1978: Environmental factors controlling the palagonitization of the Surtsey Tephra, Iceland. Bull. Geol. Soc. Denmark 27, 91–105.Google Scholar
  76. Jenkins, W. J. J. M. Edmond, and J. B. Corliss, 1978: Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature 272, 156–158.Google Scholar
  77. Johnson, D. V., 1979: Crack distribution in the upper oceanic crust and its effects upon seismic velocity, structure, formation permeability and fluid circulation. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1479–1490. U. S. Gov’t Printing Office.Google Scholar
  78. Lawrence, J. R., 1979: Temperatures of formation of calcite veins in the basalts from DSDP holes 417A and 417D. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1183–1184. U. S. Gov’t Printing Office.Google Scholar
  79. Lister, C. R. B., 1981: Active and passive hydrothermal systems in the oceanic crust: predicted physical conditions. In: The Dynamic Environment of the Ocean Floor 441–470. Fanning, K. A., and F. T. Manheim, ( Eds.) Lexington Books.Google Scholar
  80. Livingstone, D. A., 1963: Chemical composition of rivers and lakes. U. S. Geol. Surv. Prof. Paper 440G.Google Scholar
  81. Ludden, J. N., and G. Thompson, 1978: Behavior of rare earth elements during submarine weathering of tholeiitic basalt. Nature 274, 147–148.Google Scholar
  82. Ludden, J. N., and G. Thompson, 1979: An evaluation of the behavior of the rare earth elements during the weathering of sea-floor basalt. Earth Planet. Sci. Letters 43, 85–92.Google Scholar
  83. Mackenzie, F. T., and R. M. Garrels, 1966: Chemical mass balance between rivers and oceans. Amer. J. Sci. 264, 507–525.Google Scholar
  84. Matthews, D. H., 1971: Altered basalts from Swallow Bank, an abyssal hill in the N. E. Atlantic, and from a nearly seamount. Phil. Trans. Roy. Soc. London A 168, 551–571.Google Scholar
  85. McCulloch, M. T., R. T. Gregory, G. J. Wasserburg, and H. P. Taylor, 1980: A neodymium, strontium, and oxygen isotopic study of Cretaceous Samail ophiolite, and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth Planet. Sci. Letters 46, 201–211.Google Scholar
  86. Melson, W. G., 1973: Basaltic glasses from the Deep Sea Drilling Project - chemical characteristics, compositions of alteration products, and fission track “ages”. EOS Trans. Am. Geophys. Union 54 (11) 1011–1014.Google Scholar
  87. Melson, W. G., and Tj. H. van Andel, 1966: Metamorphism in the mid-Atlantic ridge, 22°N latitude. Mar. Geol., 4, 165–186.Google Scholar
  88. Melson, W. G., V. T. Bowen, Tj. H. Van Andel, and R. Siever, 1966: Greenstones from the central valley of the mid-Atlantic ridge. Nature 209, 604–605.Google Scholar
  89. Melson, W. G., G. Thompson, and Tj. H. van Andel, 1968: Volcanism and metamorphism in the mid-Atlantic Ridge, 22°N latitude. J. Geophys. Res., 73, 5925.Google Scholar
  90. Melson, W. G., and G. Thompson, 1971: Petrology of a transform fault zone and adjacent ridge segments. Phil. Trans. Roy. Soc. London A 268, 423–441.Google Scholar
  91. Melson, W. G., and G. Thompson, 1973: Glassy abyssal basalts, Atlantic seafloor near St. Paul’s Rocks: petrography and composition of secondary clay minerals. Geol. Soc. Amer. Bull., 84, 703–716.Google Scholar
  92. Mevel, C., 1979: Mineralogy and chemistry of secondary phases in low temperature altered basalts from DSDP legs 51, 52, and 53. In: Initial Reports of the Deep Sea Drilling Project, 51–53 1299–1312. U. S. Gov’t Printing Office.Google Scholar
  93. Mevel, C., 1981: Occurrence of pumpellyite in hydrothermally altered basalts from the Vema Fracture Zone. Cont. Min. and Petrol. 76, 386–393.Google Scholar
  94. Miyashiro, A., 1973: The Troodos ophiolitic conplex was probably formed in an island arc. Earth Planet. Sci. Letters 19, 218–224.CrossRefGoogle Scholar
  95. Miyashiro, A., F. Shido, and M. Ewing, 1969: Diversity and origin of abyssal tholeitte from the mid-Atlantic ridge near 24° and 30°N latitude. Contrib. Mineral. Petrol. 23, 38–52.Google Scholar
  96. Miyashiro, A., F. Shido, and M. Ewing, 1971: Metamorphism in the mid-Atlantic Ridge near 24°N and 30°N. Phil. Trans. Roy. Soc. London A 268, 589–603.Google Scholar
  97. Miyashiro, A., F. Shido, and K. Kanehira, 1979: Metasomatic chloritization of gabbros in the Mid-Atlantic Ridge near 30°N. Mar. Geol., 31, M47 - M52.Google Scholar
  98. Moore, J. G., 1966: Rate of palagonitization of submarine basalt adjacent to Hawaii. U. S. Geol. Surv. Prof. Paper 550, D163–D171.Google Scholar
  99. Mottl, M. J., 1976: Chemical exchange between seawater and basalt during hydrothermal alteration of the oceanic crust. Ph. D. Thesis, Harvard University.Google Scholar
  100. Mottl, M. J., 1982: Metabasalts, axial hot springs and the structure of hydrothermal systems at mid-ocean ridges. Geol. Soc. Amer. Bull. (in press).Google Scholar
  101. Mottl, M. J., R. M. Anderson, W. J. Jenkins, and J. R. Lawrence, 1982: Chemistry of waters sampled from basaltic basement in DSDP holes 501, 504B and 505B. In: Initial Reports of the Deep Sea Drilling Program 68–70 (in press).Google Scholar
  102. Muehlenbachs, K., and R. H. Clayton, 1972: Oxygen isotope geochemistry of submarine greenstones. Can. J. Earth Sci. 9, 471–478.Google Scholar
  103. Muehlenbachs, K., and R. H. Clayton, 1976: Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res., 81, 4365–4369.Google Scholar
  104. Murray, J., and A. F. Renard, 1891: In: Deep Sea Deposits, Report on Sci. Results of Voyage of H. M. S. Challenger. Chapt. 5. HMSO, London.Google Scholar
  105. Nicholls, G. D. and V. T. Bowen, 1961: Natural glass from beneath red clay on the floor of the Atlantic. Nature 192, 156–157.Google Scholar
  106. Paster, T. P., 1968: Petrologic variations within submarine basalt pillows of the South Pacific-Antarctic Ocean. Ph. D. Thesis, Florida State Univ.Google Scholar
  107. Philpotts, J. A., C. C. Schnetzler, and S. R. Hart, 1969: Submarine basalts: some K, Rb, Sr, Ba, rare earths, H2O and CO2 data bearing on their alteration, modification by plagioclase and possible source materials. Earth Planet. Sci. Letters 7, 293–299.Google Scholar
  108. Pytkowicz, R. M., and D. R. Kester, 1971: The physical chemistry of seawater. In: Ann. Rev. Ocean. Mar. Biol. 9, 11–60.Google Scholar
  109. Quon, S. H., and E. G. Ehrlers, 1963: Rocks of northern part of mid-Atlantic ridge. Geol. Soc. Amer. Bull., 74, 1–8.Google Scholar
  110. Richardson, S. H., S. R. Hart, and H. Staudigel, 1980: Vein mineral ages of old oceanic crust. J. Geophys. Res. 85, 7195–7200.Google Scholar
  111. Rivers, M., 1976: The chemical effects of low temperature alteration of seafloor basalt. M. Sc. Thesis, Geology Dept., Harvard Univ.Google Scholar
  112. Robinson, P. T., M. F. J. Flowers, H. U. Schminke, and W. Ohnmacht, 1977: Low temperature alteration of oceanic basalts, DSDP Leg 37. In: Initial Reports of the Deep Sea Drilling Program 37, 775–793. U. S. Gov’t Printing Office.Google Scholar
  113. Rona, P. A., 1980: TAG hydrothermal field: mid-Atlantic ridge crest at 26°N. J. Geol. Soc. London 137, 385–402.Google Scholar
  114. Rona, P. A., K. Bostrom, and S. Epstein, 1980: Hydrothermal quartz vug from the Mid-Atlantic ridge. Geology 8, 569–572.Google Scholar
  115. Rozanova, T. V., and G. N. Baturin, 1971: Hydrothermal ore shows in the floor of the Indian Ocean. Oceanology 11, 874–879.Google Scholar
  116. Rubey, W. W., 1951: Geological history of seawater: an attempt to state the problem. Bull. Geol. Soc. Amer. 62, 1111–1147.CrossRefGoogle Scholar
  117. Russel, K. L., 1970: Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico. Geochim. Cosmochim. Acta 34, 893–907.Google Scholar
  118. Scott, R. B., and A. Hajash, 1976: Initial submarine alteration of basaltic pillow lavas: a microprobe study. Amer. J. Sci., 276, 480–501.Google Scholar
  119. Scott, R. B., D. G. Temple, and P. R. Peron, 1981: The nature of hydrothermal exchange between oceanic crust and seawater at 26°N latitude, MAR. In: The dynamic environment of the sea floor. Fanning, K. S., and F. T. Manheim, ( Eds. ): Heath and Co., p. 381–416.Google Scholar
  120. Seyfried, W. S., M. J. Mottl, and J. L. Bischoff, 1978: Seawater/basalt ratio effects on the chemistry and mineralogy of spilites from the ocean floor. Nature 275, 211–213.Google Scholar
  121. Seyfried, W. E., and J. L. Bischoff, 1979: Low temperature basalt alteration by seawater: an experimental study at 70°C and 150° C. Geochim. et Cosmochim. Acta 43, 1937–1947.Google Scholar
  122. Shand, S. J., 1949: Rocks of the mid-Atlantic ridge. J. Geol. 57, 89–92.Google Scholar
  123. Shido, F., A. Miyashiro, and M. Ewing, 1974: Compositional variation in pillow lavas from the mid-Atlantic ridge. Mar. Geol. 16, 177–190.CrossRefGoogle Scholar
  124. Siever, R., 1968: Sedimentological consequences of a steady-state ocean-atmosphere. Sedimentology 11, 5–29.Google Scholar
  125. Sillen, L. G., 1961: The physical chemistry of seawater. In: Oceanography p. 549–581. Sears, M., Ed.: Amer. Assoc. for Adv. Sci., Washington, D. C.Google Scholar
  126. Sillen, L. G., 1967: Gibbs phase rule and marine sediments. In: Equilibrium Concepts in Natural Water Systems. Adv. in. Chem. series, 64, 56–69, Washington, D.C.Google Scholar
  127. Sommer, S., and L. Ailin-Pyzik, 1978: Microscale spatial distribution of trace elements in altered portions of DSDP basalts. EOS, 59, 1111 (Abstract).Google Scholar
  128. Speiss, F. N., K. C. MacDonald, T. Atwater, R. Ballard, A. Carranza, D. Cordoba, C. Cox, V. M. Garcia, J. Francheteau, J. Guerrero, J. Hawkins, R. Haymon, R. Hessler, T. Juteau, M. Kastner, R. Larson, B. Luyendyk, J. B. Macdougall, S. Miller, W. Normark, J. Orcutt, and C. Rangin, 1980: East Pacific Rise: hot springs and geophysical experiments. Science 207, 1421–1933.Google Scholar
  129. Spooner, E. T. C., and W. S. Fyfe, 1973: Sub-seafloor metamorphism, heat and mass transfer. Contr. Mineral. Petrol. 42, 287–304.Google Scholar
  130. Spooner, E. T. C., H. J. Chapman, and J. D. Smewing, 1977: Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos Massif, Cyprus. Geochim. Cosmochim Acta 41, 873–890.Google Scholar
  131. Stjces. D. S. and K. F. Scheidegger, 1981: Temporal variations in secondary minerals from Nazca plate basalts, diabases, and microgabbros. In: Nazca Plate: Curstal Formation and Andean Convergence. Geol. Soc. Am. Mem. 154, 109–130.Google Scholar
  132. Stakes, D. S., and J. R. O’Neil, 1982: Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth Planet. Sci. Letters, 57, 285–304.Google Scholar
  133. Staudigel, H., W. B. Bryan, and G. Thompson, 1979: Chemical variation in glass-whole rock pairs from individual cooling units in holes 417D and 418A. In: Initial Reports of the Deep Sea Drilling Project 51–53, 977–986. U. S. Gov’t. Printing Office.Google Scholar
  134. Staudigel, H., S. R. Hart, and S. H. Richardson, 1981: Alteration of the oceanic crust: processes and timing. Earth Planet. Sci. Letters 52, 311–327.Google Scholar
  135. Stumm, W., and J. J. Morgan, 1981: Aquatic Chemistry. 2nd Edn. J. Wiley, N. Y., 780 pp.Google Scholar
  136. Thompson, G., 1973: A geochemical study of the low temperature interaction of seawater and oceanic igneous rock. Trans. Amer. Geophys. Union, 54, 1015–1019.Google Scholar
  137. Thompson, G., and W. G. Melson, 1972: The petrology of oceanic crust across fracture zones in the Atlantic ocean: evidence of a new kind of seafloor spreading. J. Geol. 80, 526–538.Google Scholar
  138. Thompson, G., and M. Rivers, 1976: The low temperature weathering of oceanic basalts by seawater: 1. major element fluxes. Geol. Soc. Amer. Ann. Mtg. 8, 1137 (Abstract).Google Scholar
  139. Thompson, G., and S. E. Humphris, 1977: Seawater-rock interaction in the oceanic basement. In: Proc. 2nd Internatl. Sym. Water-Rock Interact. v. III, 3. Eds. Pacquet, H., Tardy, Y.: Univ. L. Pasteur, Strasbourg.Google Scholar
  140. Tiezzi, L. J., and R. B. Scott, 1980: Crystal fractionation in a cumulate gabbro, MAR 26°N. J. Geophys. Res. 85, 5438–5454.Google Scholar
  141. Wiseman, J. D. H., 1937: Basalts from the Carlsberg Ridge, Indian Ocean. Geological and mineralogical investigations John Murray Expedition. Brit. Mus., Natl. Sci. 3, 1–28.Google Scholar
  142. Wolery, T. J., 1979: Seawater-ocean crust hydrothermal chemistry: some theoretical considerations. EOS, 60, 863 (Abstract).Google Scholar
  143. Wolery, T. J., and N. H. Sleep, 1976: Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol., 84, 249–276.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Geoffrey Thompson
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations