Advertisement

Phosphorus-Containing Polymers—The Phosphazenes

  • J. P. Critchley
  • G. J. Knight
  • W. W. Wright

Abstract

Rubber-like networks made from polyphosphazene chains were reported as early as 1897 by Stokes.1 One particular compound, poly(dichlorophosphazene), came to be known as “inorganic rubber” because of the similarity of many of its mechanical properties to those of natural rubber. Thermal decomposition of the polymer did not commence until about 300°C, but rapid hydrolysis to inorganic salts in moist air precluded any practical applications. Much effort was devoted to overcoming this problem by the synthesis of analogous polymers without halogen groups, or by attempting total replacement of the halogen groups in the polymer itself. The early attempts were frustrated by the insoluble, intractable nature of the materials produced and the consequent difficulties of chemical modification and processing. The first report of the preparation of a linear, high-molecular-weight poly(dichlorophosphazene), which was completely soluble in benzene, was made by Allcock and Kugel in 1965.2 The chloro groups of this polymer could be completely replaced by others to yield products of good hydrolytic stability.

Keywords

Solution Viscosity Natural Rubber Halogen Group Random Chain Scission Organometallic Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. N. Stokes, Am. Chem. J. 19, 782 (1897)CrossRefGoogle Scholar
  2. 2.
    H. R. Allcock and R. L. Kugel, J. Amer. Chem. Soc. 87, 4216 (1965).CrossRefGoogle Scholar
  3. 3.
    H. R. Allcock, Chem. Rev. 72, 315 (1972).CrossRefGoogle Scholar
  4. 4.
    H. R. Allcock, Polym. Preprints 13 (2), 774 (1972).Google Scholar
  5. 5.
    S. H. Rose, J. Polym. Sci. B 6, 837 (1968).CrossRefGoogle Scholar
  6. 6.
    S. H. Rose and K. A. Reynard, Polym. Preprints 13 (2), 778 (1972).Google Scholar
  7. 7.
    T. M. Connelly and J. K. Gillham, J. Appl. Polym. Sci. 20, 473 (1976).CrossRefGoogle Scholar
  8. 8.
    K. Sebata, J. H. Magill, and Y. C. Alarie, J. Fire and Flammability 9, 50 (1978).Google Scholar
  9. 9.
    J. K. Valaitis and G. S. Kyker, J. Appt. Polym. Sci. 23, 765 (1979).CrossRefGoogle Scholar
  10. 10.
    G. S. Kyker and J. K. Valaitis, Polym. Preprints 18 (1), 488 (1977).Google Scholar
  11. 11.
    G. Allen, C. J. Lewis, and S. M. Todd, Polymer 77, 44 (1970).CrossRefGoogle Scholar
  12. 12.
    H. R. Allcock and W. J. Cook, Macromolecules 7, 284 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    H. R. Allcock, G. Y. Moore, and W. J. Cook, Macromolecules 7, 571 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    G. L. Hagnauer and B. R. Laliberte, J. Appl. Polym. Sci. 20, 3073 (1976).CrossRefGoogle Scholar
  15. 15.
    T. M. Connelly and J. K. Gillham, Polym. Preprints 15 (2), 458 (1974).Google Scholar
  16. 16.
    D. P. Tate, J. Polym. Sci. Symp. 48, 33 (1974).CrossRefGoogle Scholar
  17. 17.
    G. S. Kyker and T. A. Antkowiak, Rubber Chem. Technol. 47, 32 (1974).CrossRefGoogle Scholar
  18. 18.
    D. P. Tate, Rubber World 172 (6), 41 (1975).Google Scholar
  19. 19.
    P. Touchet and P. E. Gatza, J. Elast. Plast. 9, 3 (1977).Google Scholar
  20. 20.
    J. C. Vicic and K. A. Reynard, J. Appl. Polym. Sci. 21, 3185 (1977).CrossRefGoogle Scholar

Supplementary Bibliography

  1. Phosphorus-Nitrogen Compounds,H. R. Allcock, Academic Press, N.Y. (1972).Google Scholar
  2. Polyphosphazenes-synthesis-properties-applications, R. E. Singler, N. S. Schneider, and G. L. Hagnauer, Polym. Eng. Sci. 15, 321 (1975).Google Scholar
  3. The thermal transition behavior of polyorganophosphazenes, N. S. Schneider, C. R. Desper, and R. E. Singler, J. Appl. Polym. Sci. 20, 3087 (1976).Google Scholar
  4. Poly(organophosphazenes)—unusual new high polymers, H. R. Allcock, Angew. Chem. Int. Ed. Engl. 16, 147 (1977).Google Scholar
  5. Polyphosphazenes: structure and applications, R. E. Singler and G. L. Hagnauer, in Organometallic Polymers, C. E. Carraher, J. E. Sheats, and C. U. Pittman, (eds.), Academic Press, N.Y. (1978), p. 257.Google Scholar
  6. Transition to the mesomorphic state in polyphosphazenes, N. S. Schneider, C. R. Desper, R. E. Singler, M. N. Alexander, and P. L. Sagalyn, in Organometallic Polymers, C. E. Carraher, J. E. Sheats, and C. U. Pittman, (eds.), Academic Press, N.Y. (1978), p. 271.Google Scholar
  7. Poly(organophosphazenes) designed for biomedical uses, H. R. Allcock, in Organometallic Polymers, C. E. Carraher, J. E. Sheats, and C. U. Pittman, (eds.), Academic Press, N.Y. (1978), p. 283.Google Scholar
  8. Biocompatibility of eight poly(organophosphazenes), C. W. R. Wade, S. Gourlay, R. Rice, A. Hegyeli, R. Singler, and J. White, in Organometallic Polymers, C. E. Carraher, J. E. Sheats, and C. U. Pittman, (eds.), Academic Press, N.Y. (1978), p. 289.Google Scholar
  9. Thermal degradation of polybis(p-isopropylphenoxy)phosphazene, I. Goldfarb, N. D. Hann, R. L. Dieck, and D. C. Messersmith, J. Polym. Sci., Polym. Chem. Ed. 16, 1505 (1978).Google Scholar
  10. Poly(organophosphazenes). Synthesis and applications of a new class of technologically important polymers, J. M. McAndless, Defense Research Establishment, Ottawa, Report No. 795 (January 1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. P. Critchley
    • 1
  • G. J. Knight
    • 1
  • W. W. Wright
    • 1
  1. 1.Royal Aircraft EstablishmentFarnboroughEngland

Personalised recommendations