Neutron Scattering and the 30 S Ribosomal Subunit of E. coli

  • P. B. Moore
  • D. M. Engelman
  • J. A. Langer
  • V. R. Ramakrishnan
  • D. G. Schindler
  • B. P. Schoenborn
  • I.-Y. Sillers
  • S. Yabuki
Chapter
Part of the Basic Life Sciences book series (BLSC, volume 27)

Abstract

Ribosomes are nucleoprotein enzymes which catalyze the formation of polypeptide chains under mRNA control, using aminoacyl tRNAs as substrates—for reviews see Nomura et al. (22) and Chambliss et al. (2). While our knowledge of what these particles do in protein synthesis is satisfactory, our understanding of how they do it is minimal. We still have no idea, for example, what there is about the mechanism of protein synthesis that requires all ribosomes, whatever their source, to be two-subunit enzymes. It is most unlikely that mechanistic questions of even this simple kind will be answered until much more is known about the three-dimensional structure of these particles than is known today.

Keywords

Length Distribution Neutron Scattering Interference Fringe Axial Ratio Line Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bracewell, R.N., “The Fourier Transform and Its Application,” 2nd ed., McGraw-Hill, New York (1978).Google Scholar
  2. 2.
    Chambliss, G., Craven, G.R., Davies, J., Davis, K., Kahan, L., and Nomura, M., eds., “Ribosomes—Structure, Function and Genetics,” University Park Press, Baltimore, MD (1980).Google Scholar
  3. 3.
    DeRosier, D.J. and Klug, A., Nature 217:130–4 (1968).CrossRefGoogle Scholar
  4. 4.
    Engelman, D.M. and Moore, P.B., Proc. Natl. Acad. Sci. USA 69:1997–9 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    Engelman, D.M., Moore, P.B., and Schoenborn, B.P., in: “Neutron Scattering for the Analysis of Biological Structures,” B.P. Schoenborn, ed., Brookhaven Symp. Biol. 27:IV 20-37 (1975).Google Scholar
  6. 6.
    Engelman, D.M., Methods Enzymol. 59:656–69 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    Guinier, A. and Fournet, G., “Small Angle Scattering of X-Rays,” Wiley, New York (1955).Google Scholar
  8. 8.
    Guinier, A., in: “International Tables for X-Ray Crystallography,” 2nd ed., Vol. 3, pp. 324–9, K. Lonsdale, ed., Kynoch Press, Birmingham (1968).Google Scholar
  9. 9.
    Hoppe, W., Israel J. Chem. 10:321–33 (1972).CrossRefGoogle Scholar
  10. 10.
    Hoppe, W., J. Mol. Biol. 79:581–5 (1973).CrossRefGoogle Scholar
  11. 11.
    Hoppe, W., May, R., Stöckel, P., Lorenz, S., Erdmann, V.A., Wittmann, H.G., Crespi, H.L., Katz, J.J., and Ibel, K., Brookhaven Symp. Biol. 27:IV 38–48 (1975).Google Scholar
  12. 12.
    Kahan, L., Winkelman, D., and Lake, J.A., J. Mol. Biol. 145:193–214 (1981).CrossRefGoogle Scholar
  13. 13.
    Kratky, O. and Worthmann, W., Monatsh. Chem. 76:263–81 (1947).CrossRefGoogle Scholar
  14. 14.
    Luzzati, V., Tardieu, A., and Aggerbeck, L.P., J. Mol. Biol. 131:435–73 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    Marquardt, D.W., SIAM J. Appl. Math. 11:431–41 (1963).CrossRefGoogle Scholar
  16. 16.
    May, R., Ph.D. Thesis, Technical University, München (1978).Google Scholar
  17. 17.
    Moore, P.B., Langer, J.A., Schoenborn, B.P., and Engelman, D.M., J. Mol. Biol. 112:199–234 (1977).CrossRefGoogle Scholar
  18. 18.
    Moore, P.B., Langer, J.A., and Engelman, D.M., J. Appl. Crystallogr. 11:479–82 (1978).CrossRefGoogle Scholar
  19. 19.
    Moore, P.B., Methods Enzymol. 59:639–55 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    Moore, P.B. and Weinstein, E., J. Appl. Crystallogr. 12:321–6 (1979).CrossRefGoogle Scholar
  21. 21.
    Moore, P.B., J. Appl. Crystallogr. 13:168–75 (1980).CrossRefGoogle Scholar
  22. 22.
    Nomura, M., Tissieres, A., and Lengyel, P., “Ribosomes,” Cold Spring Harbor Lab., Cold Spring Harbor, NY (1974).Google Scholar
  23. 23.
    Ramakrishnan, V.R. and Moore, P.B., J. Mol. Biol. 153:719–38 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    Ramakrishnan, V.R., Yabuki, S., Sillers, I-Y., Schindler, D.G., Engelman, D.M., and Moore, P.B., J. Mol. Biol. 153:739–60 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    Schindler, D.G., Langer, J.A., Engelman, D.M., and Moore, P.B., J. Mol. Biol. 134:595–620 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    Sillers, I-Y. and Moore, P.B., J. Mol. Biol. 153:761–80 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    Stöckel, P., May, R., Strell, I., Gelka, Z., Hoppe, W., Hermann, H., Zillig, W., Crespi, H., Katz, J.J., and Ibel, K., J. Appl. Crystallogr. 12:176–85 (1979).CrossRefGoogle Scholar
  28. 28.
    Tischendorf, G.W., Zeichhardt, H., and Stöffler, G., Proc. Natl. Acad. Sci. USA 72:4820–4 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    Vainstein, B.K., Sasfenov, N.I., and Feigin, L.A., Doklady Akad. Nauk SSSR 190:574–7 (1970).Google Scholar
  30. 30.
    Wittmann, H.G., Littlechild, J.A., and Wittmann-Liebold, B., in: “Ribosomes—Structure, Function and Genetics,” pp. 51–88, G. Chambliss et al., eds., University Park Press, Baltimore (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • P. B. Moore
    • 1
  • D. M. Engelman
    • 2
  • J. A. Langer
    • 2
  • V. R. Ramakrishnan
    • 1
  • D. G. Schindler
    • 1
  • B. P. Schoenborn
    • 3
  • I.-Y. Sillers
    • 1
  • S. Yabuki
    • 1
  1. 1.Dept. of ChemistryYale UniversityNew HavenUSA
  2. 2.Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA
  3. 3.Biology Dept.Brookhaven National Lab.UptonUSA

Personalised recommendations