Neutron Spectroscopy of Hydrogenous and Biosynthetically Deuterated Proteins

  • H. D. Middendorf
  • J. T. Randall
  • H. L. Crespi
Part of the Basic Life Sciences book series (BLSC, volume 27)


During the years since the first Brookhaven Symposium of this kind, the scope of neutron spectroscopy has broadened considerably as the result of increased flux levels and advances in instrumentation, implemented primarily at the Institut Laue-Langevin in Grenoble. The potential of high resolution neutron spectroscopy as applied to the study of protein-water and protein-ligand dynamics is due to a unique combination of three factors:
  1. a)

    the wide range of hydrogen/deuterium contrast conditions that can be created in a binary or ternary scattering system involving partially or fully deuterated proteins;

  2. b)

    the frequency region covered by neutron techniques (106 to 1013 Hz), bridging the nanosecond to picosecond gap where data are lacking, as well as providing sufficient overlap with complementary information derived from other techniques;

  3. c)

    the fact that the small energy differences characteristic of weakly interacting molecular systems are resolved along with spatial information in the 1 to 100-Å region.



Inelastic Scattering Difference Spectrum Coherent Scattering Jump Diffusion Hydration Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maconnachie, A. and Richards, R.W., Polymer 19:739 (1978).CrossRefGoogle Scholar
  2. 2.
    Leadbetter, A.J. and Lechner, R.E., in: “The Plastically Crystalline State,” J.N. Sherwood, ed., p. 285, Wiley, Chichester (1979).Google Scholar
  3. 3.
    Hall, P.L. and Ross, D.K., in: “Advanced Chemical Methods for Soil Clay Minerals,” p. 245, Reidel, Dordrecht (1980)Google Scholar
  4. Cebula, D.J., Thomas, R.K., and White, J.W., Clay and Clay Minerals 29:241 (1981).CrossRefGoogle Scholar
  5. 4.
    Boutin, H. and Yip, S., “Molecular Spectroscopy with Neutrons,” M.I.T. Press, Cambridge, MA (1968).Google Scholar
  6. 5.
    Dahlborg, U. and Rupprecht, A., Biopolymers 10:849 (1971).PubMedCrossRefGoogle Scholar
  7. 6.
    Randall, J.T. and Gilmour, S., Unpublished observations (1975).Google Scholar
  8. 7.
    Cooper, A., Sci. Prog. 66:473 (1980).PubMedGoogle Scholar
  9. 8.
    Karplus, M. and McCammon, J.A., CRC Crit. Rev. Biochem. 9:293 (1981).PubMedCrossRefGoogle Scholar
  10. 9.
    Peticolas, W.L., Methods Enzymol. 61:425 (1978).CrossRefGoogle Scholar
  11. 10.
    Marshall, W. and Lovesey, S.W., “Theory of Thermal Neutron Scattering,” Clarendon Press, Oxford (1971).Google Scholar
  12. 11.
    Berns, D.S., in: “Subunits in Biological Systems,” S.N. Timasheff and G.D. Fasman, eds., Vol. 5A, p. 105, Dekker, New York (1971).Google Scholar
  13. 12.
    Taecker, R.G., Crespi, H.L., DaBoll, H.F., and Katz, J.J., J. Biotechnol. Bioeng. 13:779 (1971).CrossRefGoogle Scholar
  14. 13.
    Yamanaka, G., Glazer, A.N., and Williams, R.C., J. Biol. Chem. 255:11004 (1980).Google Scholar
  15. 14.
    Fisher, R.G., Woods, N.E., Fuchs, H.E., and Sweet, R.M., J. Biol. Chem. 255:5082 (1980).PubMedGoogle Scholar
  16. 15.
    Randall, J.T., Middendorf, H.D., Crespi, H.L., and Taylor, A.D., Nature 276:636 (1978).CrossRefGoogle Scholar
  17. 16.
    Middendorf, H.D. and Randall, J.T., Phil. Trans. R. Soc. Lond. B290:639 (1980).Google Scholar
  18. 17.
    Randall, J.T. and Middendorf, H.D., in: “Biophysics of Water,” F. Franks and S. Mathias, eds., p. 15, Wiley, Chichester (1983).Google Scholar
  19. 18.
    Randall, J.T., Middendorf, H.D., Hayter, J.B., and Crespi, H.L., J. Chem. Soc, Faraday Trans. II (to be published).Google Scholar
  20. 19.
    Middendorf, H.D. and Randall, J.T., Ms. in preparation.Google Scholar
  21. 20.
    Hayter, J.B., in: “Scattering Techniques Applied to Supra-molecular and Non-equilibrium Systems,” NATO Advanced Study Institute, Wellesley College, MA (1980).Google Scholar
  22. 21.
    Birr, M., Heidemann, A., and Alefeld, B., Nucl. Instr. Meth. 95:435 (1971).CrossRefGoogle Scholar
  23. 22.
    Kuntz, I.D. and Kauzmann, W., Adv. Protein Chem. 28:239 (1974).PubMedCrossRefGoogle Scholar
  24. 23.
    Dianoux, A.J., Pineri, M., and Volino, F., Molec. Phys. 46:129 (1982).CrossRefGoogle Scholar
  25. 24.
    Rupley, J.A., Gratton, E., and Careri, G., Trends Biochem. Sci. 8:18 (1983).CrossRefGoogle Scholar
  26. 25.
    Finney, J.L., Goodfellow, J.M., and Poole, P.L., in: “Structural Molecular Biology—Methods and Applications,” D.B. Davies et al., eds., p. 387, Plenum, New York (1982).CrossRefGoogle Scholar
  27. 26.
    Bryant, R.G. and Shirley, W.M., Biophys. J. 32:3,80 (1980).CrossRefGoogle Scholar
  28. 27.
    Kossiakoff, A.A., Nature 296:713 (1982).PubMedCrossRefGoogle Scholar
  29. 28.
    Lechner, R.E., Volino, F., Dianoux, A.J., Douchin, F., Hervet, H., and Stirling, G.C., Institut Laue-Langevin Report No. 73L85, Grenoble (1973).Google Scholar
  30. 29.
    Jacrot, B., Cusack, S., Dianoux, A.J., and Engelman, D.M., Nature 300:84 (1982).PubMedCrossRefGoogle Scholar
  31. 30.
    Sturtevant, J.M., Proc. Natl. Acad. Sci. USA 74:2236 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • H. D. Middendorf
    • 1
  • J. T. Randall
    • 2
  • H. L. Crespi
    • 3
  1. 1.Dept. of BiophysicsUniversity of London King’s CollegeLondonUK
  2. 2.Dept. of ZoologyU. of EdinburghEdinburghUK
  3. 3.Argonne National LaboratoryArgonneUSA

Personalised recommendations