Application of Joint Neutron and X-Ray Refinement to the Investigation of the Structure of Ribonuclease A at 2.0-Å Resolution

  • Alexander Wlodawer
  • Lennart Sjölin
Part of the Basic Life Sciences book series (BLSC, volume 27)


The principal aim in the determination of protein structure by using neutron diffraction is to find the positions of hydrogen atoms. Since protein crystals used in neutron investigations are usually deuterated (in order to decrease the incoherent scattering by hydrogen atoms), it is also possible to identify highly protected main-chain amide groups (10, 24). While in principle it is possible to determine the neutron structure of a protein de novo, by using either isomorphous replacement with isotopes such as 164Dy or anomalous scattering of 113Cd, 149Sm, or 157Gd, such attempts have not progressed beyond the testing of their feasibility (17). All neutron structures completed to date have utilized x-ray models in the initial stages of the investigation in order to provide the starting set of phases. In most cases the x-ray coordinates were not used after this initial step, and the neutron refinement proceeded on its own (2, 7, 11, 14). On the other hand, Wlodawer and Hendrickson (23) proposed a method of refinement in which the structure is jointly refined with the neutron and x-ray data. In this report we will describe our experience with the application of joint refinement to the determination of the structure of ribonuclease A at 2.0-Å resolution, and we will discuss the validity of this procedure.


Incoherent Scattering Neutron Diffraction Data Neutron Data Anomalous Scattering Neutron Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, G.A., Duee, E.D., Mason, S.A., and Nunes, A.C., J. Chim. Phys. 76:817 (1979).Google Scholar
  2. 2.
    Bentley, G.A. and Mason, S.A., in: “Structural Studies on Molecules of Biological Interest,” G. Dodson et al., eds., p. 246, Clarendon Press, Oxford (1981).Google Scholar
  3. 3.
    Bundi, A. and Wüthrich, K., Biopolymers 18:285 (1979).CrossRefGoogle Scholar
  4. 4.
    Borkakoti, N., Moss, D.A., and Palmer, R.A., Acta Crystallogr. B38:2210 (1982).Google Scholar
  5. 5.
    Coppens, P., Boehme, R., Prince, P.F., and Stevens, E.D., Acta Crystallogr. A37:857 (1981).Google Scholar
  6. 6.
    Glasoe, P.K. and Long, F.A., J. Phys. Chem. 64:188, (1960).CrossRefGoogle Scholar
  7. 7.
    Hanson, J. and Schoenborn, B.P., J. Mol. Biol. 153:117 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    Hendrickson, W.A. and Konnert, J.H., in: “Biomolecular Structure, Conformation, Function, and Evolution,” R. Srinivasan, ed., Vol. 1, p. 43, Pergamon, Oxford (1981).Google Scholar
  9. 9.
    Hoppe, W., Brookhaven Symp. Biol. 27:11–22 (1976).Google Scholar
  10. 10.
    Kossiakoff, A.A., Nature (London) 296:713 (1982).CrossRefGoogle Scholar
  11. 11.
    Kossiakoff, A.A. and Spencer, S.A., Biochemistry 20:6462 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    Luzzati, V., Acta Crystallogr. 5:802 (1952).CrossRefGoogle Scholar
  13. 13.
    Phillips, S.E.V., J. Mol. Biol. 142:531 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    Phillips, S.E.V. and Schoenborn, B. P., Nature (London) 292:81 (1981).CrossRefGoogle Scholar
  15. 15.
    Prince, E., Wlodawer, A., and Santoro, A., J. Appl. Crystallogr. 11:173 (1978).CrossRefGoogle Scholar
  16. 16.
    Roberts, G.C.K., Meadows, D.H., and Jardetzky, O., Biochemistry 8:2053 (1969).PubMedCrossRefGoogle Scholar
  17. 17.
    Schoenborn, B.P., in: “Anomalous Scattering,” S. Ramaseshan and S.C. Abrahams, eds., p. 407, Munksgaard, Copenhagen (1975).Google Scholar
  18. 18.
    Sjölin, L. and Wlodawer, A., Acta Crystallogr. A37:594 (1981).Google Scholar
  19. 19.
    Takano, T., J. Mol. Biol. 110:537 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    Wlodawer, A., Acta Crystallogr. B36:1826 (1980).Google Scholar
  21. 21.
    Wlodawer, A. and Sjölin, L., Proc. Natl. Acad. Sci USA 78:2853 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    Wlodawer, A., Bott, R. and Sjölin, L., J. Biol. Chem. 257:1325 (1982).PubMedGoogle Scholar
  23. 23.
    Wlodawer, A. and Hendrickson, W.A., Acta Crystallogr. A38:239 (1982).Google Scholar
  24. 24.
    Wlodawer, A. and Sjölin, L., Proc. Natl. Acad. Sci. USA 79:1418 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Alexander Wlodawer
    • 1
    • 2
  • Lennart Sjölin
    • 1
    • 2
  1. 1.National Measurement LaboratoryNational Bureau of StandardsUSA
  2. 2.National Institute of Arthritis, Diabetes and Digestive and Kidney DiseasesLaboratory of Molecular BiologyBethesdaUSA

Personalised recommendations