Hydrogen Bonding and Exchange in Oxymyoglobin

  • Simon E. V. Phillips
Part of the Basic Life Sciences book series (BLSC, volume 27)


Myoglobin (Mb) reversibly binds oxygen in vertebrate muscle. It consists of a polypeptide chain of 153 residues and one heme, and closely resembles one subunit of a hemoglobin (Hb) tetramer. In oxygenated myoglobin (oxyMb), the iron atom is coordinated by four porphyrin nitrogen atoms, Nϵ of the invariant “proximal” histidine (His 8F), and an oxygen molecule (19). A second histidine (His 7E), the “distal” histidine, lies close to the oxygen, and is found in Mb and Hb of most species. Its function is twofold, to present steric hindrance to linear ligands such as carbon monoxide, while favoring bent ones such as oxygen, and to form a hydrogen bond to bound oxygen, stabilizing the heme-oxygen complex. The latter function was proposed by Pauling (18), but was first observed directly in the work described here. At neutral pH a histidine ring normally has a hydrogen atom bonded to one of the two ring nitrogen atoms. His 7E in Mb has one nitrogen facing the oxygen ligand, and the other facing the surrounding solvent (Figure 1). The position of the hydrogen, and therefore the presence or absence of a hydrogen bond to O2 can be determined unequivocally only by direct observation using neutron diffraction (20). Neutron protein crystallography on oxyMb also affords a more detailed picture of hydrogen bonding and water structure than that available from x-ray studies, and information on hydrogen exchange.


Hydrogen Exchange Amide Hydrogen Heme Pocket Deoxy Form Acceptor Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberi, J., Fischer, T., Radeka, V., Rogers, L.C., and Schoenborn, B.P., Nucl. Instr. Methods 127:507 (1975).CrossRefGoogle Scholar
  2. 2.
    Case, D.A., Huynh, B.H., and Karplus, M., J. Am. Chem. Soc. 101:4433 (1979).CrossRefGoogle Scholar
  3. 3.
    Case, D.A. and Karplus, M., J. Mol. Biol. 132:343 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    Diamond, R., in: “Symposium on Biomolecular Structure, Conformation, Function and Evolution, Madras, 1978,” R. Srinivasan, ed., Pergamon, Oxford (1981).Google Scholar
  5. 5.
    Drago, S.D. and Corden, B.B., Acc. Chem. Res. 13:353 (1980).CrossRefGoogle Scholar
  6. 6.
    Englander, S.W. and Staley, R., J. Mol. Biol. 45:277 (1969).PubMedCrossRefGoogle Scholar
  7. 7.
    Englander, S.W., Calhoun, D.B., Englander, J.J., Kallenbach, N.R., Liem, R.K.H., Malin, E.L., Mandal, C., and Rogero, J.R., Biophys. J. 32:557 (1980).CrossRefGoogle Scholar
  8. 8.
    Hamilton, W.C. and Ibers, J.A., in: “Hydrogen Bonding in Solids,” W.A. Benjamin, New York (1968).Google Scholar
  9. 9.
    Hanson, J.C. and Schoenborn, B.P., J. Mol. Biol. 153:117 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    Ikeda-Saito, M., Iizuka, T., Yamamoto, H., Kayne, F.J., and Yonetani, T., J. Biol. Chem. 252:4882 (1977).PubMedGoogle Scholar
  11. 11.
    Ikeda-Saito, M., Brunori, M., and Yonetani, T., Biochim. Biophys. Acta 533:173 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    Jack, A. and Levitt, M., Acta Crystallogr. A34:931 (1978).Google Scholar
  13. 13.(a)
    Kossiakoff, A.A., Nature 296:713 (1982).PubMedCrossRefGoogle Scholar
  14. (b).
    Kossiakoff, A.A. and Spencer, S.A., Biochemistry 20:6462 (1981).PubMedCrossRefGoogle Scholar
  15. 14.
    Lee, B. and Richards, F.M., J. Mol. Biol. 55:379 (1971).PubMedCrossRefGoogle Scholar
  16. 15.
    Luzzati, V., Acta Crstallogr. 5:802 (1952).CrossRefGoogle Scholar
  17. 16.
    Raghavan, N.V. and Schoenborn, B.P., See paper in this Symposium.Google Scholar
  18. 17.
    Olafson, B.D. and Goddard, W.A., Proc. Natl. Acad. Sci. USA 74:1315(1977).PubMedCrossRefGoogle Scholar
  19. 18.
    Pauling, L., Nature 203:182 (1964).CrossRefGoogle Scholar
  20. 19.
    Phillips, S.E.V., J. Mol. Biol. 142:531 (1980).PubMedCrossRefGoogle Scholar
  21. 20.
    Phillips, S.E.V. and Schoenborn, B.P., Nature 292:81 (1981).PubMedCrossRefGoogle Scholar
  22. 21.
    Reed, C.A. and Cheung, S.K., Proc. Natl. Acad. Sci. USA 74:1780 (1977).PubMedCrossRefGoogle Scholar
  23. 22.
    Schoenborn, B.P., Cold Spring Harbor Symp. Quant. Biol. 36:569 (1971).CrossRefGoogle Scholar
  24. 23.
    Wagner, G. and Wuthrich, K., J. Mol. Biol. 134:75 (1979).PubMedCrossRefGoogle Scholar
  25. 24.
    Weiss, J.J., Nature 202:83 (1964).PubMedCrossRefGoogle Scholar
  26. 25.
    Woodward, C.K. and Hilton, B.D., Annu. Rev. Biophys. Bioeng. 8:99 (1979).PubMedCrossRefGoogle Scholar
  27. 26.
    Yonetani, T., Yamamoto, H., and Iizuka, T., J. Biol. Chem. 249:2168.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Simon E. V. Phillips
    • 1
  1. 1.Medical Research CouncilLaboratory of Molecular BiologyCambridgeEngland

Personalised recommendations