Neutron Diffraction Studies of Bacteriorhodopsin Structure

  • J. Trewhella
  • E. Gogol
  • G. Zaccai
  • D. M. Engelman
Chapter
Part of the Basic Life Sciences book series (BLSC, volume 27)

Abstract

Halobacterium halobium is a microorganism that can survive only in solutions containing more than 12% salt (1). When oxygen supplies become limited, the organism synthesizes a specialized region in the plasma membrane that converts visible light energy into an electrochemical gradient by pumping protons across the plasma membrane out of the cell (2). This specialized membrane can be isolated in a stable form at low ionic strength (3,4) and is known as the purple membrane by virtue of its strong pigmentation. Purple membrane is 75% protein and only 25% lipid. The single protein species whose retinal prosthetic group is responsible for the purple color is called bacteriorhodopsin, by analogy with the vertebrate visual pigments. As shown by x-ray diffraction studies, bacteriorhodopsin exists in a hexagonal lattice in the plane of the membrane bilayer, and the packing arrangement is described by the two-dimensional crystallographic space group p3 (5).

Keywords

Assignment Model Purple Membrane Deuterium Label Mosaic Spread Halobacterium Halobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsen, H., Adv. Microbiol. 1:97–132 (1967).CrossRefGoogle Scholar
  2. 2.
    Stoeckenius, W., Lozier, R.H., and Bogmolini, R.A., Biochim. Biophys. Acta 505:215–78 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    Stoeckenius, W. and Rowen, R., J. Cell Biol. 34:365–93 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    McClare, C.W.F., Nature (London) 216:766–71 (1967).CrossRefGoogle Scholar
  5. 5.
    Blaurock, A. and Stoeckenius, W., Nature New Biol. 233:152–5 (1971).PubMedGoogle Scholar
  6. 6.
    Khorana, H.G., Gerber, G.E., Herlihy, W.C., Gray, C.P., Anderegg, R.J., Nihel, K., and Biemann, K., Proc. Natl. Acad. Sci. USA 76:5046–50 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    Ovchinnikov, Yu.A., Abdulaev, N.G., Feigina, M.Yu., Kisliev, A.V., and Lobanov, N.A., FEBS Lett. 100:219–24 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    Henderson, R. and Unwin, P.N.T., Nature (London) 257:28–32 (1975).CrossRefGoogle Scholar
  9. 9.
    Blaurock, A., J. Mol. Biol. 93:139–58 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    Long, M.M., Urry, D.W., and Stoeckenius, W., Biochem. Biophys. Res. Commun. 75:725–31 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    Henderson, R., Jubb, J.S., and Whytock, S., J. Mol. Biol. 123:259–74 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    Hayward, S.B., Grano, D.A., Glaeser, R.M., and Fisher, K.A., Proc. Natl. Acad. Sci. USA 75:4320–4 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    Gerber, G., Gray, C., Wildernauer, D., and Khorana, H.G., Proc. Natl. Acad. Sci. USA 74:5426–30 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    Engelman, D.M., Henderson, R., MacLaughlin, A., and Wallace, B.A., Proc. Natl. Acad. Sci. USA 77:2023–7 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    Agard, D.A. and Stroud, R.M., Biophys. J. 37:589–602 (1981).Google Scholar
  16. 16.
    Engelman, D.M. and Zaccai, G., Proc. Natl. Acad. Sci. USA 77:5894–8 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Oesterhelt, D. and Stoeckenius, W., Nature New Biol. 233:149–52 (1971).PubMedGoogle Scholar
  18. 18.
    Zaccai, G. and Gilmore, D.J., J. Mol. Biol. 132:181–91 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    Keefer, L.M. and Bradshaw, R.A., Fed. Proc. 36:1799–804 (1977).PubMedGoogle Scholar
  20. 20.
    Gehrke, C.W., Nakamoto, H., and Zumwati, R.W., J. Chromatogr. 45:24–51 (1969).CrossRefGoogle Scholar
  21. 21.
    Engelman, D.M., Goldman, A., and Steitz, T.A., Methods Enzymol. 88:81–8 (1981).CrossRefGoogle Scholar
  22. 22.
    Michel, H., Oesterhelt, D., and Henderson, R., Proc. Natl. Acad. Sci. USA 77:338–42 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    Diamond, R., BILDER User’s Guide, Section 1.2.3, pp. 20–4, MRC Lab. of Molecular Biology, Cambridge, England (1979).Google Scholar
  24. 24.
    Trewhella, J., Anderson, S.A., Fox, R., Gogol, E., Khan, S., Zaccai, G., and Engelman, D.M., Biophys. J., in press (1983).Google Scholar
  25. 25.
    Bayley, H., Huang, K.S., Radhakkrishnan, R., Ross, A.H., Takagaki, Y., and Khorana, H.G., Proc. Natl. Acad. Sci. USA 78:2225–9 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    Lemaster, D. and Richards, F.M., Anal. Biochem. 122:238–47 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • J. Trewhella
    • 1
  • E. Gogol
    • 1
  • G. Zaccai
    • 1
    • 2
  • D. M. Engelman
    • 1
  1. 1.Dept. of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA
  2. 2.Institut Laue-LangevinGrenobleFrance

Personalised recommendations