Advertisement

Neutron Scattering Studies of Virus Structure

  • Stephen Cusack
Chapter
Part of the Basic Life Sciences book series (BLSC, volume 27)

Abstract

Since the last Brookhaven Symposium, small-angle neutron scattering has emerged as an important new technique in the study of virus structure. A great advantage of neutron scattering (over, for instance, small-angle x-ray scattering) is the possibility of exploiting the H2O/D2O contrast variation method to facilitate the interpretation of scattering data in terms of the distribution within the virion of its different chemical constituents (protein, nucleic acid, lipid, and water). The ability to do this is frequently sufficient to justify making neutron measurements despite the inherently limited resolution achievable in solution scattering experiments. The method by which a low resolution model of a virus structure is obtained from a contrast variation set of data is the subject of this paper.

Keywords

Influenza Virus Neutron Scattering Semliki Forest Virus Alfalfa Mosaic Virus Scatter Length Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abad-Zapatero et al., Nature 286:33–9 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    Berthet-Coliminas, C., Cuillel, M., Jacrot, B., Tardieu, A., and Vachette, P., J. Mol. Biol., in press (1983).Google Scholar
  3. 3.
    Chauvin, C., Witz, J., and Jacrot, B., J. Mol. Biol. 124:641–51 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    Compans, R.W., Klenk, H.D., Caliguin, L.A., and Choppin, P.W., Virology 42:880–9 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    Cuillel, M., Tripier, F., Braunwald, J., and Jacrot, B., Virology 99:277–85 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    Cusack, S., Miller, A., Krijgsman, P.C.J., and Mellema, J.E., J. Mol. Biol. 145:525–43 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    Cusack, S., J. Mol. Biol. 145:539–41 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    Freeman, R. and Leonard, K.R., J. Microscopy 122:275–86 (1981).CrossRefGoogle Scholar
  9. 9.
    Glatter, O., J. Appl. Crystallogr. 10:415–71 (1977).CrossRefGoogle Scholar
  10. 10.
    Glatter, O., J. Appl. Crystallogr. 14:101–8 (1981).CrossRefGoogle Scholar
  11. 11.
    Harrison, S.C., Olson, A.J., Schutt, C.E., Winkler, F.K., and Bricogne, G., Nature 276:368–73 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    Herrler, G., Nagele, A., Meier-Ewert, H., Bhown, A.S., and Compans, R.W., Virology 113:439–51 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    Ibel, K. and Stuhrmann, H.B., J. Mol. Biol. 93:255–66 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    Jack, A. and Harrison, S.C., J. Mol. Biol. 99:15–25 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    Jacrot, B., Comprehensive Virology 17:129–81 (1981).CrossRefGoogle Scholar
  16. 16.
    Jacrot, B. and Zaccai, G., Biopolymers 20:2413–26 (1981).CrossRefGoogle Scholar
  17. 17.
    Kruse, J., Timmins, P.A., and Witz, J., Virology 119:42–50 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    Mellema, J.E. et al., J. Mol. Biol. 151:329–36 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    Munowitz, M.G., Dobson, C.M., Griffin, R.G., and Harrison, S.C., J. Mol. Biol. 141:327–33 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    Rayment, I., Baker, T.S., Casper, D.L.D., and Murakani, W.T., Nature 295:110–15 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    Robinson, J.K. and Harrison, S.C., Nature 297:563–8 (1982).CrossRefGoogle Scholar
  22. 22.
    Ruigrok, R.W.H., Andree, P.J., Hooft van Huysduynen, R.A.M., and Mellema, J.E., submitted to EMBO Journal.Google Scholar
  23. 23.
    Schneider, D., Zulauf, M., Schafer, R., and Franklin, R.M., J. Mol. Biol. 124:97–122 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    Schulze, I.T., Adv. Virus Res. 18:1–55 (1973).CrossRefGoogle Scholar
  25. 25.
    Sjorberg, B., J. Appl. Crystallogr. 11:73–9 (1978).CrossRefGoogle Scholar
  26. 26.
    Skehel, J.J. et al., Proc. Natl. Acad. Sci. USA 79:968–72 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    Timmins, P.A. and Jacrot, B., in: “Neutron Scattering in Molecular Biology,” D.L. Worcester, ed., Elsevier/North Holland, in press (1982).Google Scholar
  28. 28.
    Torbet, J., FEBS Lett. 108:61 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    Webster, R.G., Laver, W.G., Air, G.M., and Schild, G.C., Nature 296:115 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    Zulauf, M., Cuillel, M., and Jacrot, B., in: “Scattering Techniques Applied to Supramolecular and Non-Equilibrium Systems,”, pp. 865–71, S.M. Chen et al., eds., Plenum, New York (1981).CrossRefGoogle Scholar
  31. 31.
    Devaux, C., Timmins, P.A., and Berthet-Coliminas, C., submitted to J. Mol. Biol. (1982).Google Scholar
  32. 32.
    Krüse, J., Krüse, K.M., Witz, J., Chauvin, C., Jacrot, B., and Tardieu, A., J. Mol. Biol. 162:393–417 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Stephen Cusack
    • 1
  1. 1.Grenoble OutstationEuropean Molecular Biology Laboratory, Institut Laue-LangevinGrenoble CedexFrance

Personalised recommendations