Aqueous Solutions of Silane Coupling Agents

  • Edwin P. Plueddemann


Since organofunctional alkoxysilanes are often hydrolyzed before being applied to surfaces to function as coupling agents, it is important to understand their reactions with water and in water. Commercial practice is to apply silane coupling agents to glass from aqueous solutions of the alkoxysilanes. Organofunctional trialkoxysilanes hydrolyze in water and then condense to oligomeric siloxanols as described in Section 2.3.3. Stability and reactivity of aqueous solutions of silanes depend on many factors, including the nature of the organofunctional group on silicon. Since compounds with neutral organofunctional groups behave differently from those with cationic or anionic functions, they will be discussed separately.


Coupling Agent Silanol Group Sodium Silicate Silane Coupling Agent Alkoxy Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Plueddemann. SPI, 24th nn. Tech. Conf. Reinf. Plast. 19-A (1969).Google Scholar
  2. 2.
    C. W. Lentz. Inorg. Chem. 3, 574 (1964).CrossRefGoogle Scholar
  3. 3.
    H. Ishida and J. L. Koenig. Appl Spectros. 32(5), 462 (1978).CrossRefGoogle Scholar
  4. 4.
    H. Ishida and J. L. Koenig. Appl. Spectros. 32(5), 469 (1978).CrossRefGoogle Scholar
  5. 5.
    B. W. Pearce, K. G. Mayhan, and J. F. Montle. Polymer 14 (Sept), 420 (1973).Google Scholar
  6. 6.
    K. A. Andrianov and B. A. Izmaylov. J. Organomet. Chem. 8, 435 (1967).CrossRefGoogle Scholar
  7. 7.
    M. M. Sprung and F. O. Guenther. J. Polymer Sci. 28, 17 (1958).CrossRefGoogle Scholar
  8. 8.
    J. F. Brown, Jr. and L. H. Vogt. J. Am. Chem. Soc. 84, 4313 (1965).CrossRefGoogle Scholar
  9. 9.
    J. F. Brown, Jr. J. Am. Chem. Soc. 84, 4317 (1965).CrossRefGoogle Scholar
  10. 10.
    H. Ishida, S. Naviroj, S. K. Tripathy, J. J. Fitzgerald, and J. L. Koenig. SPI, 36th Tech. Conf. Reinf. Plast. 2-C (1981).Google Scholar
  11. 11.
    C. H. Chiang, H. Ishida, and J. Koenig. J. Colloid Interface Sci. 74(2), 396 (1980).CrossRefGoogle Scholar
  12. 12.
    O. K. Johannson, F. O. Stark, G. E. Vogel, and R. M. Fleishmann. J. Compos. Mater. 1, 278 (1970).Google Scholar
  13. 13.
    E. P. Plueddemann. Silylated Surfaces, D. E. Leyden & W. Collins, Ed., p. 40, Gordon & Breach, New York (1980).Google Scholar
  14. 14.
    B. M. Vanderbilt and R. E. Clayton (to Esso). U.S. Patent 3,350,345 (1967).Google Scholar
  15. 15.
    C. L. Frye (to Dow Corning). U.S. Patent 2,814,572 (1957).Google Scholar
  16. 16.
    E. P. Plueddemann (to Dow Corning). U.S. Patent 3,734,763 (1973).Google Scholar
  17. 17.
    A. J. Isquith, E. A. Abbott, and P. A. Walters. Appl. Microbiol. 24(6), 859 (1973).Google Scholar
  18. 18.
    R. Wong and J. C. Hood. AFML-TR-65-316 Summary Technical Report, July (1965).Google Scholar
  19. 19.
    E. P. Plueddemann (to Dow Corning). U.S. Patent 3,956,353 (1976).Google Scholar
  20. 20.
    E. P. Plueddemann (to Dow Corning). U.S. Patent 4,093,641 (1978).Google Scholar
  21. 21.
    R. C. Merrill and R. W. Spencer. J. Phys. Colloid Chem. 54, 506 (1950).Google Scholar
  22. 22.
    E. P. Plueddemann (to Dow Corning). U.S. Patent applied for.Google Scholar
  23. 23.
    A.N. Pines and E. A. Zientek (to UCC). U.S. Patent 3,198,820 (1965).Google Scholar
  24. 24.
    C. L. Frye, G. E. Vogel, and J. A. Hall. J. Am. Chem. Soc. 83, 996 (1961).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Edwin P. Plueddemann
    • 1
  1. 1.Dow Corning CorporationMidlandUSA

Personalised recommendations