Hadamard and Other Discrete Transforms in Spectroscopy

  • N. J. A. Sloane

Abstract

This paper is an introduction to the use of Hadamard and other matrices for increasing the accuracy to which the spectrum of a beam of light can be measured. In the most favorable case if the spectrum has n components the mean squared error in each component is reduced by a factor of n/4. These schemes have the additional merit that the instrumentation required is relatively simple.

Keywords

Generalize Inverse Chemical Balance Hadamard Matrice Hadamard Matrix Mercury Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yates, F. 1935, J. Roy. Statist. Soc. Supp. 2, 181–247.CrossRefGoogle Scholar
  2. 2.
    Harwit, M., and Sloane, N. J. A. 1979, Hadamard Transform Optics, Academic Press, N.Y.Google Scholar
  3. 3.
    Banerjee, K. S. 1975, Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics, Marcel Dekker, N.Y.Google Scholar
  4. 4.
    Geramita, A. V., and Seberry, J. 1979, Orthogonal Designs, Marcel Dekker, N.Y.Google Scholar
  5. 5.
    Geramita, A. V., and Wallis, J. S. 1974, Utilitas Math. 6, 209–236.Google Scholar
  6. 6.
    Hotelling, H. 1944, Ann. Math. Statist. 15, 297–306.CrossRefGoogle Scholar
  7. 7.
    Kiefer, J. 1959, J. Roy. Statis. Soc, Ser. B.21, 272–319.Google Scholar
  8. 8.
    Kishen, K. 1945, Ann. Math. Stat. 16, 294–300.CrossRefGoogle Scholar
  9. 9.
    Mood, A. M. 1946, Ann. Math. Stat. 17, 432–446.CrossRefGoogle Scholar
  10. 10.
    Raghavarao, D. 1971, Constructions and Combinatorial Problems in Design of Experiments, John Wiley, N.Y.Google Scholar
  11. 11.
    Sloane, N. J. A., and Harwit, M. 1976, Appl. Opt. 15, 107–114.CrossRefGoogle Scholar
  12. 12.
    Golay, M. J. E. 1949, J. Opt. Soc. Amer. 39, 437–444.CrossRefGoogle Scholar
  13. 13.
    Golay, M. J. E. 1951, J. Opt. Soc. Amer. 41, 468–472.CrossRefGoogle Scholar
  14. 14.
    Fellgett, P. 1951, Ph.D. Thesis, Cambridge Univ., Cambridge.Google Scholar
  15. 15.
    Fellgett, P. 1967, J. de Physique, Colloque C2, 28, 165–171.Google Scholar
  16. 16.
    Ibbett, R. N., Aspinall, D., and Grainger, J. F. 1968, Appl. Opt. 7, 1089–1093.CrossRefGoogle Scholar
  17. 17.
    Decker, J. A., Jr., and Harwit, M. 1968, Appl. Opt. 7, 2205–2209.CrossRefGoogle Scholar
  18. 18.
    Nelson, E. D., and Fredman, M. L. 1970, J. Opt. Soc. Amer. 60, 1664–1669.CrossRefGoogle Scholar
  19. 19.
    Harwit, M. 1971, Appl. Opt. 10, 1415–1421; 1973, 12, 285-288.CrossRefGoogle Scholar
  20. 20.
    Harwit, M., Phillips, P. G., Fine, T., and Sloane, N. J. A. 1970, Appl. Opt. 9, 1149–1154.CrossRefGoogle Scholar
  21. 21.
    Harwit, M., Phillips, P. G., King, L. W., and Briotta, D. A., Jr. 1974, Appl. Opt. 13, 2669–2674.CrossRefGoogle Scholar
  22. 22.
    Sloane, N. J. A. 1979, Mathematics Magazine 52, 71–79.CrossRefGoogle Scholar
  23. 23.
    Sloane, N. J. A., Fine, T., Phillips, P. G., and Harwit, M. 1969, Appl. Opt. 8, 2103–2106.CrossRefGoogle Scholar
  24. 24.
    Sloane, N. J. A., Harwit, M., and Tai, M.-H. 1978, Appl. Opt. 17, 2991–3002.CrossRefGoogle Scholar
  25. 25.
    Swift, R. D., Wattson, R. B., Decker, J. A., Jr., Paganetti, R., and Harwit, M. 1976, Appl. Opt. 15, 1595–1609.CrossRefGoogle Scholar
  26. 26.
    Tai, M.-H., Harwit, M., and Sloane, N. J. A. 1975, Appl. Opt. 14, 2678–2686.CrossRefGoogle Scholar
  27. 27.
    Decker, J. A., Jr. 1971, Appl. Opt. 10, 510–514.CrossRefGoogle Scholar
  28. 28.
    Ben-Israel, A., and Charnes, A. 1963, J. Soc. Indust. Appl. Math. 11 667–699.CrossRefGoogle Scholar
  29. 29.
    Ben-Israel, A., and Greville, T. N. E. 1974, Generalized Inverses: Theory and Applications, John Wiley, N.Y.Google Scholar
  30. 30.
    Nashed, M. Z., ed. 1976, Generalized Inverses and Applications, Academic Press, N.Y.Google Scholar
  31. 31.
    Penrose, R. 1955, Proc. Cambridge Philos. Soc. 51, 406–413.CrossRefGoogle Scholar
  32. 32.
    Penrose, R. 1956, Proc. Cambridge Philos. Soc. 52 17–19.CrossRefGoogle Scholar
  33. 33.
    Price, C. M. 1964, SIAM Review 6, 115–120.CrossRefGoogle Scholar
  34. 34.
    Rao, C. R., and Mitra, S. K. 1971, Generalized Inverse of Matrices and Its Applications, John Wiley, N.Y.Google Scholar
  35. 35.
    Cramér, H. 1946, Mathematical Methods of Statistics, Princeton Univ. Press, Princeton.Google Scholar
  36. 36.
    Deutsch, R. 1965, Estimation Theory, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  37. 37.
    Efron, B. 1975, Advances in Math. 16, 259–277.CrossRefGoogle Scholar
  38. 38.
    Efron, B., and Morris, C. 1977, Scientific American 236, Number 5, 119–127.Google Scholar
  39. 39.
    James, W., and Stein, C. 1961, Proc. Fourth Berkeley Symp. Math. Stat. Prob., Univ. Calif. Press, Berkeley, Calif. 1, 361–379.Google Scholar
  40. 40.
    Stein, C. 1955, Proc. Third Berkeley Symp. Math. Stat. Prob., Univ. Calif. Press, Berkeley, iCalif. 1, 197–206.Google Scholar
  41. 41.
    Fischer, J., private communication.Google Scholar
  42. 42.
    Hadamard, J. 1893, Bull. Sci. Math. (2) 17, 240–248.Google Scholar
  43. 43.
    Hall, M., Jr. 1967, Combinatorial Theory, Blaisdell, Waltham, Mass.Google Scholar
  44. 44.
    Turyn, R. J. 1974, J. Combinatorial Theory 16A, 313–333.CrossRefGoogle Scholar
  45. 45.
    Wallis, W. D., Street, A. P., and Wallis, J. S. 1972, Lecture Notes in Math. 292, Springer-Verlag, N.Y.Google Scholar
  46. 46.
    Golomb, S. W., ed. 1964, Digital Communications with Space Applications, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  47. 47.
    van Lint, J. H., MacWilliams, F. J., and Sloane, N. J. A. 1979, SIAM J. Appl. Math. 36, 62–72.CrossRefGoogle Scholar
  48. 48.
    MacWilliams, F. J., and Sloane, N. J. A. 1976, Proc. IEEE 64, 1715–1729.CrossRefGoogle Scholar
  49. 49.
    MacWilliams, F. J., and Sloane, N. J. A. 1977, The Theory of Error-Correcting Codes, North-Holland, Amsterdam.Google Scholar
  50. 50.
    Baumert, L. D. 1967, JPL Space Programs Summary 37-43-IV, 311–314.Google Scholar
  51. 51.
    Baumert, L. D. 1971, Lecture Notes in Math. 182, Springer-Verlag, N.Y.Google Scholar
  52. 52.
    Thoene, R., and Golomb, S. W. 1966, JPL Space Programs Summary 37-40-IV, 207–208.Google Scholar
  53. 53.
    Berlekamp, E. R. 1970, Bell Syst. Tech. J. 49, 969–986.Google Scholar
  54. 54.
    Belevitch, V. 1950, Electronics Comm. 27, 231–244.Google Scholar
  55. 55.
    Belevitch, V. 1956, Proc. Symp. Modern Network Synthesis, Polytechnic Inst. Brooklyn, Brooklyn, N.Y., pp. 175–195.Google Scholar
  56. 56.
    Belevitch, V. 1968, Ann. Soc. Scientifiques Bruxelles 82(I), 13–32.Google Scholar
  57. 57.
    Delsarte, P., Goethals, J.-M., and Seidel, J. J. 1971, Canad. J. Math. 23, 816–832.CrossRefGoogle Scholar
  58. 58.
    van Lint, J. H. 1974, Lecture Notes in Math. 382, Springer-Verlag, N.Y., Chapter 14.Google Scholar
  59. 59.
    Brenner, J., and Cummings, L. 1972, Amer. Math. Monthly 79, 626–630.CrossRefGoogle Scholar
  60. 60.
    Miyamoto, S., Tsunemi, H., and Tsuno, K. 1981, “Some Characteristics of the Hadamard Transform X-ray Telescope,” preprint.Google Scholar
  61. 61.
    Skinner, G. K. 1980, J. British Interplanetary Soc. 33, 333–337.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • N. J. A. Sloane
    • 1
  1. 1.Mathematics and Statistics Research CenterBell LaboratoriesMurray HillUSA

Personalised recommendations