Aspects of Fourier Transform Visible/UV Spectroscopy

  • Robert J. Nordstrom

Abstract

Fourier transform spectroscopy, a technique which Mertz1 once called “a disagreeable indirect method to record a spectrum”, has matured in recent years into a widely used and accepted spectroscopic technique. The rapid increase in the popularity of Fourier spectroscopy can be attributed, at least in part, to the technological advances in computer hardware and to the development of the Cooley-Tukey alogrithm2 for computing Fourier transforms quickly. Both of these developments have helped to popularize Fourier spectroscopy and have given strong impetus to its growing appeal and commercialization by significantly reducing the time required to compute a final spectrum from the recorded interferogram.

Keywords

Spectral Element Michelson Interferometer Optical Path Difference Final Spectrum Fringe Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mertz, L., 1975, Transformations in Optics, John Wiley & Sons, New York.Google Scholar
  2. 2.
    Cooley, J. W. and Tukey, J. W., 1965, Math. Comput. 19, 297.CrossRefGoogle Scholar
  3. 3.
    Gebbie, H. A., Vanasse, G. and Strong, J., 1956, J. Opt. Soc. Am. 46, 377.Google Scholar
  4. 4.
    Gebbie, H. A., 1957, Phys. Rev. 107, 1194.CrossRefGoogle Scholar
  5. 5.
    Connes, J. and Gush, H., 1959, J. Phys. Radium 20, 915.CrossRefGoogle Scholar
  6. 6.
    Connes, J. and Connes, P., 1966, J. Opt. Soc. Am. 56, 896.CrossRefGoogle Scholar
  7. 7.
    Connes, P., 1978, Appl. Opt. 17, 1318.CrossRefGoogle Scholar
  8. 8.
    Michelson, A. A., 1891, Phil. Mag. Ser 5 31, 256.CrossRefGoogle Scholar
  9. 9.
    Shankland, R. S., April 1974, Physics. Today.Google Scholar
  10. 10.
    Rubens, H. and Wood, R. W., 1911, Phil. Mag. 21, 249.Google Scholar
  11. 11.
    Fellgett, P., 1958, J. Phys. Radium 19, 187.CrossRefGoogle Scholar
  12. 12.
    Jacquinot, P. and Dufour, C. J., 1948, J. Rech. C.N.R.S. 6, 91.Google Scholar
  13. 13.
    Jacquinot, P., 1960, Rep. Prog. Phys. 23, 267.CrossRefGoogle Scholar
  14. 14.
    Loewenstein, E. W., 1966, Appl. Opt. 5, 845.CrossRefGoogle Scholar
  15. 15.
    Bates, J. B., 1976, Sci. 191., 31.CrossRefGoogle Scholar
  16. 16.
    Vanasse, G. A., Stair, Jr., A. T. and Baker, D. J., 1971, “Aspen International Conference on Fourier Spoectroscopy, 1970”, Air Force Cambridge Research Laboratories, AFCRL-71-0019, Special Report 114.Google Scholar
  17. 17.
    1958, J. Phys. Radium 19, Contains many papers from the 1957 C.N.R.S. Bellevue Colloquium; 1967, J. Phys. Supp. C2 28, Contains papers from the 1966 C.N.R.S. Orsay Colloquium.Google Scholar
  18. 18.
    1978, Applied Optics 17, Contains papers from the 1977 International Conference on Fourier Transform Spectroscopy, Columbia, S.C.Google Scholar
  19. 19.
    Bell, R. J., 1972, Introductory Fourier Transform Spectroscopy, Academic Press, New York.Google Scholar
  20. 20.
    Chamberlain, J. E., 1979, The Principles of Interferometric Spectroscopy, completed, collated, and edited by G. W. Chanry and N. W. B. Stone, Wiley, Chichester and New York.Google Scholar
  21. 21.
    Jacquinot, P., 1965, Jpn. J. Appl. Phys. 4, suppl. 1, 401.Google Scholar
  22. 22.
    Filler, A. S., AFCRL 71-0019 Special Reports 114, 407.Google Scholar
  23. 23.
    Luc., P. and Gerstenkorn, S., 1972, Astron. Astrophys. 18, 209.Google Scholar
  24. 24.
    Gerstenkorn, S. and Luc, P., 1978, Atlas du Spectre d’ Absorption de la Molécule d’ Iodine: 14, 800-20,000 cm -1, Editions C.N.R.S., Paris.Google Scholar
  25. 25.
    Luc, P. and Gterstenkorn, S., 1978, Appl. Opt. 17, 1327.CrossRefGoogle Scholar
  26. 26.
    Steel, W. H., 1967, Interferometry, Cambridge at the University Press.Google Scholar
  27. 27.
    Fragon, M., 1966, Optical Interferometry, Academic Press, New York.Google Scholar
  28. 28.
    Brigham, E. O., 1974, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  29. 29.
    Loewenstein, E. V., 1971, AFCRL 71-0019 Special Reports 114, 3.Google Scholar
  30. 30.
    Heer, C. V., 1972, Statistical Mechanics, Kinetic Theory, and Stochastic Processes, Academic Pres, New York.Google Scholar
  31. 31.
    Ring, J. and Schofield, J. W., 1972, Appl Opt. 11, 507.CrossRefGoogle Scholar
  32. 32.
    Hirschfeld, T., 1977, Appl. Spectrosc. 31, 471.CrossRefGoogle Scholar
  33. 33.
    Connes, P. and Michel, G., 1975, Appl. Opt. 14, 2067.CrossRefGoogle Scholar
  34. 34.
    An interesting view of photomultiplier tube characteristics can be found in EMI Photomultipliers, published by EMI Industrial Electronics LTD 1979.Google Scholar
  35. 35.
    Khan, F., 1959, Astrophys. J. 129, 518.CrossRefGoogle Scholar
  36. 36.
    Filler, A., 1973, J. Opt. Soc. Am. 63, 589.CrossRefGoogle Scholar
  37. 37.
    Chester, T., Fitzgerald, J. and Winefordner, J., 1976, Anal. Chem. 48, 793.CrossRefGoogle Scholar
  38. 38.
    Hirschfeld, T., 1976, Appl. Spectrosc. 30, 68.CrossRefGoogle Scholar
  39. 39.
    Sakai, H., 1971, AFCRL 71-0019 Special Reports 114, 19.Google Scholar
  40. 40.
    Chang, Y. S. and Shaw, J., 1977, App. Spectrosc. 31, 213.CrossRefGoogle Scholar
  41. 41.
    Chang, Y. S. and Shaw, J., 1977, J. Quant. Spectrosc. Radiat. Transfer 18, 491.CrossRefGoogle Scholar
  42. 42.
    Lin, C. L., Niple, E., Shaw, J., Uselman, W., and Calvert, J. A., 1978, J. Quant. Spectrosc. Radiat. Transfer 20, 581.CrossRefGoogle Scholar
  43. 43.
    Farrow, M., Burnham, R., and Eyring, E., 1978, Appl.Phys. Lett. 33, 735.CrossRefGoogle Scholar
  44. 44.
    Lloyd, L., Riseman, S., Burnham, R. and Eyring, E., 1980, Rev. Sci. Instrum. 51, 1488.CrossRefGoogle Scholar
  45. 45.
    Gerstenkorn, S. and Luc, P., 1976, Nouv. Rev. Optique 7, 149.CrossRefGoogle Scholar
  46. 46.
    Horlick, G. and Yuen, W. K., 1978, Appl. Spectrosc. 32, 38.CrossRefGoogle Scholar
  47. 47.
    Horlick, G. and Yuen, W. K., 1975, Anal. Chem. 47, 775A.Google Scholar
  48. 48.
    Brault, J., 1976, J. Opt. Soc. Am. 66, 1081.Google Scholar
  49. 49.
    Beer, R. and Marjaniemi, D., 1966, Appl. Opt. 5, 1191.CrossRefGoogle Scholar
  50. 50.
    Luc, P. and Gerstenkorn, S., 1979, Rev. Phys. App. 14, 791.CrossRefGoogle Scholar
  51. 51.
    Yuen, W. K. and Horlick, G., 1977, Anal. Chem. 49, 1446.CrossRefGoogle Scholar
  52. 52.
    Palmer, B., Keller, R. and Engleman, Jr., R., “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge”, Los Alamos-825/-MS, Informal Report UC-34a, July 1980.Google Scholar
  53. 53.
    Fellgett, P., 1967, J. Phys. Supp (Paris) 28, C2, 165.Google Scholar
  54. 54.
    Bell, E. E., 1967, J. Phys. Supp. (Paris) 28, C2, 165.Google Scholar
  55. 55.
    Bell, E. E., 1971, AFCRL 71-0019 Special Reports 114, 71.Google Scholar
  56. 56.
    The author is aware of the efforts of Bomem, Inc. to market an instrument which operates in the visible/UV region.Google Scholar
  57. 57.
    Dunn, S. T., 1978, Appl. Opt. 17, 1367.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Robert J. Nordstrom
    • 1
  1. 1.Physico-Chemical SystemsBattelle Columbus LaboratoriesColumbusUSA

Personalised recommendations