Advertisement

Fourier Transform Infrared Spectrometry

  • James A. de Haseth

Abstract

Fourier Transform Infrared (FT-IR) Spectrometry has evolved during the last quarter century from a limited and specialized technology to a widely accepted and powerful tool. Although FT-IR was originally the province of astronomers it quickly found application in high-resolution spectroscopy and analytical chemistry. This chapter will cover the basic aspects of Fourier Transform Infrared Spectrometry as well as explore some recent applications of the technique. More in-depth treatments of the subject may be found elsewhere.1, 2

Keywords

Infrared Spectrometry Michelson Interferometer Optical Path Difference Rayleigh Criterion Indophenol Blue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Griffiths, P. R., 1975, Chemical Infrared Fourier Transform Spectroscopy, John Wiley & Sons, New York.Google Scholar
  2. 2.
    Bell, R. J., 1972, Introductory Fourier Transform Spectroscopy, Academic Press, New York.Google Scholar
  3. 3.
    Steel, W. H., 1967, Interferometry, Cambridge University Press, Cambridge.Google Scholar
  4. 4.
    Beer, R. and Norton, R. H., 1976, J. Opt. Soc. An., 66, 259.CrossRefGoogle Scholar
  5. 5.
    Horlick, G. and Yuen, W. K., 1975, Anal. Chem., 47, 775A.Google Scholar
  6. 6.
    Yuen, W. K. and Horlick, G., 1977, Anal. Chem., 49, 1446.CrossRefGoogle Scholar
  7. 7.
    Horlick, G. and Yuen, W. K., 1978, Appl. Spectrosc., 32, 38.CrossRefGoogle Scholar
  8. 8.
    Ref. 2, Chapt. 11.Google Scholar
  9. 9.
    Griffiths, P. R., 1978, “Fourier Transfrom Infrared Spectroscopy: Theory and Instrumentation” in Transform Techniques in Chemistry, Griffiths, P. R., Ed., Plenum, New York, p. 127.CrossRefGoogle Scholar
  10. 10.
    Ref. 2, Appendix C.Google Scholar
  11. 11.
    “Specifications of Bomem Model DA3.XX Interferometric Spectro-photometers,” Tech Note 18, Bomem, Inc., 910 Place Dufour, Ville de Vanier, Quebec G1M 3B1, Canada.Google Scholar
  12. 12.
    Optical and Infrared Detectors, Keys, R. J., ed., Springer-Verlag, Berlin, 1977.Google Scholar
  13. 13.
    Foskett, C. T., 1976, Appl. Spectrosc, 30, 531.CrossRefGoogle Scholar
  14. 14.
    Griffiths, P. R., 1978, “Infrared Fourier Transform Spectrometry: Applications to Analytical Chemsitry,” in Transform Techniques in Chemistry, Griffiths, P. R., Ed., Pelnum, New York, Chapt. 6.CrossRefGoogle Scholar
  15. 15.
    Fourier Transform Infrared Spectroscopy: Application to Chemical Systems, Ferraro, J. R. and Basile, L. J., Eds., Academic Press, New York; Vol. I, 1978; Vol. II, 1979.Google Scholar
  16. 16.
    Analytical Applications of FT-IR to Molecular and Biological Systems, Durig, J. R., Ed., D. Reidel Publishing Company, Dordrect, Holland, 1980.Google Scholar
  17. 17.
    Low, M. J. D. and Freeman, S. K., 1967, Anal. Chem., 39, 194.CrossRefGoogle Scholar
  18. 18.
    Low, M. J. D., 1968, Anal. Letters, 1, 819.CrossRefGoogle Scholar
  19. 19.
    Low, M. J. D., Mark, H. and Goodsel, A. J., 1971, J. Paint Technol., 43(562), 49.Google Scholar
  20. 20.
    Kizer, K. L., 1973, Am. Lab., 5(6), 40.Google Scholar
  21. 21.
    Azarraga, L. V., 1976, Improved Sensitivity of On-the-Fly-GCIR Spectroscopy, Paper No. 334, Pittsburgh Conf. Anal. Chem. Appl. Spectrosc, Cleveland, OH.Google Scholar
  22. 22.
    Azarraga, L. V., 1980, Appl. Specrosc, 34, 224.CrossRefGoogle Scholar
  23. 23.
    Griffiths, P. R., 1977, Appl. Spectrosc, 31, 284.CrossRefGoogle Scholar
  24. 24.
    de Haseth, J. A. and Isenhour, T. L., 1977, Anal. Chem., 49, 1977.CrossRefGoogle Scholar
  25. 25.
    Coffey, P., Mattson, D. R. and Wright, J. C., 1978, Am. Lab., 10(5), 126.Google Scholar
  26. 26.
    For example, Azarraga, L. V. and Hanna, D. A., GIFTS, Athens GC/FT-IR Software User’s Guide, U.S. EPA/ERL, Athern, Ga., 1979. (Available from authors.).Google Scholar
  27. 27.
    Kuehl, D. and Griffiths, P. R., 1978, Anal. Chem., 50, 418.CrossRefGoogle Scholar
  28. 28.
    Gomez-Taylor, M. M. and Griffiths, P. R., 1978, Anal. Chem., 50, 422.CrossRefGoogle Scholar
  29. 29.
    Kuehl, D., Kemeny, G. J. and Griffiths, P. R., 1980, Appl. Spectrosc., 34, 222.CrossRefGoogle Scholar
  30. 30.
    Kuehl, D., 1981, Hardware Considerations for a Capillary GC/FT-IR Interface, Paper No. 242, Pittsburgh Conf. Anal. Chem. Appl. Spectrosc, Atlantic City, NJ.Google Scholar
  31. 31.
    Azarraga, L. V. and Potter, C. A., 1981, J. High Resol. Chromatog. & Chromatog. Comm., 4, 61.Google Scholar
  32. 32.
    Reedy, G. T., Bowne, S. and Cunningham, P. T., 1979, Anal. Chem., 51, 1535.CrossRefGoogle Scholar
  33. 33.
    Kizer, K. L., Mantz, A. W. and Bonar, L. C, 1975, An. Lab., 7(5), 85.Google Scholar
  34. 34.
    Vidrine, D. W. and Mattson, D. R., 1978, Appl. Spectrosc, 32, 502.CrossRefGoogle Scholar
  35. 35.
    e. g., Brown, R. S., Hausier, D. W., Taylor, L. T. and Carter, R. C, 1981, Anal. Chem., 53, 197.CrossRefGoogle Scholar
  36. 36.
    Kuehl, D. and Griffiths, P. R., 1979, J. Chromatogr. Sci., 17, 471.CrossRefGoogle Scholar
  37. 37.
    Kuehl, D. T. and Griffiths, P. R., 1980, Anal. Chem., 52, 1394.CrossRefGoogle Scholar
  38. 38.
    Fuller, M. P. and Griffiths, P. R., 1978, Anal. Chem., 50, 1906.CrossRefGoogle Scholar
  39. 39.
    Griffiths, P. R., 1978, “Infrared Transform Specrometry: Applications to Analytical Chemistry,” in Transform Techniques in Chemistry, Griffiths, P. R., Ed., Plenum, New York, p. 147.CrossRefGoogle Scholar
  40. 40.
    Kemeny, G. J. and Griffiths, P. R., 1980, Appl. Spectrosc, 34, 95.CrossRefGoogle Scholar
  41. 41.
    Low, M. J. D. and Parodi, G. A., 1980, Appl. Spectrosc, 34, 76.CrossRefGoogle Scholar
  42. 42.
    Black, R. E. and Wakefield II, T., 1979, Anal. Chem., 51, 50.CrossRefGoogle Scholar
  43. 43.
    Busse, G. and Bullemer, 1978, Infrared Phys., 18, 255.CrossRefGoogle Scholar
  44. 44.
    Busse, G. and Bullemer, 1978, Infrared Phys., 18, 631.CrossRefGoogle Scholar
  45. 45.
    Rockley, M. G., 1979, Chem. Phys. Lett., 68, 455.CrossRefGoogle Scholar
  46. 46.
    Rockley, M. G., 1980, Appl. Spectrosc, 34, 405.CrossRefGoogle Scholar
  47. 47.
    Vidrine, D. W., 1980, Appl. Spectrosc, 34, 314.CrossRefGoogle Scholar
  48. 48.
    Rockley, M. G. and Devlin, J. P., 1980, 34, 407.Google Scholar
  49. 49.
    Rockley, M. G., Davis, D. M. and Richardson, H. H., 1980, Science, 210, 918.CrossRefGoogle Scholar
  50. 50.
    Rockley, M. G., Davis, D. M. and Richardson, H. H., 1981, Appl. Spectrosc, 35, 185.CrossRefGoogle Scholar
  51. 51.
    Annual Book of ASTM Standards, part 43, p. 518, Standard #F-121-76, 1977.Google Scholar
  52. 52.
    Ibid, p. 523, Standard #F-123-74.Google Scholar
  53. 53.
    Mead, D. G. and Lowry, S. R., 1980, Appl. Spectrosc, 34, 167.CrossRefGoogle Scholar
  54. 54.
    Vidrine, D. W., 1980, Anal. Chem., 52, 92.CrossRefGoogle Scholar
  55. 55.
    Mead, D. G., 1980, Appl. Spectrosc, 34, 171.CrossRefGoogle Scholar
  56. 56.
    Krishnan, K., “Measurement of Impurities in Silicon Using a Conventional FT-IR System & the New Digilab SIM-100,” Digilab, Inc., 237 Putnam Ave., Cambridge, Ma. 02139.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • James A. de Haseth
    • 1
  1. 1.Department of ChemistryThe University of Alabama UniversityUSA

Personalised recommendations