Advances in FT-NMR Methodology for Paramagnetic Solutions: Detection of Quadrupolar Nuclei in Complex Free Radicals and Biological Samples

  • N. S. Dalal


This chapter reviews our recent studies aimed at developing the FT-NMR method as a “beat-relaxation” technique which permits the detection of fast-relaxing spins such as quadrupolar nuclei in paramagnetic solutions. The technique is termed “beat relaxation” since the FT-NMR method takes advantage of the short spin-lattice relaxation times (<10–11 sec) whereas fast relaxation renders other paramagnetic resonance techniques unsuitable for detecting such species. Our primary focus will be on measuring small (≤ 1 Gauss) hyperfine (hf) couplings from quadrupolar nuclei in large organic radicals in solution where such measurements have been feasible for the first time. The significance of the FT-NMR advances may be gauged from the fact that measurements of small 14N couplings in free radicals had previously not been possible despite the use of EPR, conventional NMR, electron-nuclear double-resonance (ENDOR),1,2 electron-electron double-resonance (ELDOR),1,2 and electron-nuclear triple resonance.3


Triple Resonance Quadrupolar Nucleus Contact Shift Observe Line Width Fast Relaxation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kevan, L., and Kispert, L. D. 1976, Electron Spin Double Resonance Spectroscopy, John Wiley & Sons, New York.Google Scholar
  2. 2.
    Freed, J. H., and Dorio, M. M. 1979, Multiple Electron Resonance Spectroscopy, Plenum Press, New York.Google Scholar
  3. 3.(a)
    Freed, J. H. 1969, J. Chem. Phys. 50, 2271.CrossRefGoogle Scholar
  4. (b).
    Dalal, N. S., and McDowell, C. A. 1970, Chem. Phys. Lett. 6, 17.CrossRefGoogle Scholar
  5. (c).
    For a recent review, see K. Mobius and R. Biehl in ref. 2, p. 475.Google Scholar
  6. 4.
    Holden, A. N., Kittel, C., Merrit, F. R., and Yager, W. A. 1949, Phys. Rev. 75, 1614.CrossRefGoogle Scholar
  7. 5.
    Townes, C. H., and Turkevich, J. 1950, Phys. Rev, 77, 147.CrossRefGoogle Scholar
  8. 6.
    Hutchison, C. A., Pastor, R. C, and Kowalsky, A. G. 1952, J. Chem. Phys. 20, 534.CrossRefGoogle Scholar
  9. 7.
    Deal, R. M., and Koski, W. S. 1959, J. Chem. Phys. 31, 1138.CrossRefGoogle Scholar
  10. 8.
    Deguchi, Y. 1960, J. Chem. Phys. 32, 1584.CrossRefGoogle Scholar
  11. 9.
    Holmberg, R. W., Livingston, R., and Smith, W. T. 1960, J. Chem. Phys. 33, 541.CrossRefGoogle Scholar
  12. 10.
    Chen, M. M., Sane, K. V., Walter, R. I., and Weil, J. A. 1961, J. Amer. Chem. Soc. 65, 713.Google Scholar
  13. 11.
    Lord, N. W., and Blinder, S. M. 1961, J. Chem. Phys. 34, 1693.CrossRefGoogle Scholar
  14. 12.
    Haniotis, Z., and Gunthard, Hs. H. 1968, Helv. Chim. Acta. 51, 561.CrossRefGoogle Scholar
  15. 13.
    Hyde, J. S., Sneed, R. C, and Rist, G. H. 1969, J. Chem. Phys. 51, 1404. In addition to the pioneering ELDOR work, this paper presents an excellent summary of magnetic resonance studies of DPPH up to 1969.CrossRefGoogle Scholar
  16. 14.
    Dalal, N. S., Kennedy, D. E., and McDowell, C. A. 1973, J. Chem. Phys. 59, 3403.CrossRefGoogle Scholar
  17. 15.
    Gubanov, V. A., Koryakov, V. I., and Chirkov, A. K. 1973, J. Magn. Reson. 11, 326.Google Scholar
  18. 16.
    Gubanov, V. A., and Chirkov, A. K. 1973, Acta Phys. Pol. A, 43, 361.Google Scholar
  19. 17.
    Gutowsky, H. S., Kusumoto, H., Brown, T. H., and Anderson, D. H. 1959, J. Chem. Phys. 30, 860; 1960, 33, 720.CrossRefGoogle Scholar
  20. 18.
    Anderson, M. E., Pake, G. E., and Tuttle, T. R. 1960, J. Chem. Phys. 33, 1581.CrossRefGoogle Scholar
  21. 19.
    Sagdeev, R. Z., Molin, Yu. N., Koryakov, V. I., Chirkov, A. K., and Matevosyan, R. O. 1972, Org. Magn. Reson. 4, 365.CrossRefGoogle Scholar
  22. 20.
    Verlinden, R., Grobet, P., and Van Gerven, L. 1974, Chem. Phys. Lett. 27, 535.CrossRefGoogle Scholar
  23. 21.
    Yoshiolka, T., Ohya-Nishiguchi, H., and Deguchi, Y. 1974, Bull. Chem. Soc. Japan 47, 430.CrossRefGoogle Scholar
  24. 22.
    Biehl, R., Mobius, K., O’Conner, S. E., Walter, R. I., and Zimmerman, H. 1979, J. Phys. Chem. 83, 3449.CrossRefGoogle Scholar
  25. 23.
    Dalai, N. S., Ripmeester, J. A., and Reddoch, A. H. 1978, J. Magn. Reson. 31, 471.Google Scholar
  26. 24.
    Dalai, N. S., Kennedy, D. E., and McDowell, C. A. 1974, J. Chem. Phys. 61, 1689.CrossRefGoogle Scholar
  27. 25.
    Dalai, N. S., Kennedy, D. E., and McDowell, C. A. 1975, Chem. Phys. Lett. 30, 186.CrossRefGoogle Scholar
  28. 26.
    Walter, R. I. 1966, J. Amer. Chem. Soc. 88, 1930.CrossRefGoogle Scholar
  29. 27.
    Allendoerfer, R. D., and Maki, A. H. 1970, J. Magn. Reson. 3, 396.Google Scholar
  30. 28.
    See, for example, the excellent summary of this work by J. H. Freed in reference 2, p. 73.Google Scholar
  31. 29.
    See, for example, W. Kreilick 1973, in NMR of Paramagnetic Molecules, Principles and Applications, ed. G. N. La Mar, W. deW. Horrocks, Jr., and R. H. Holm, Academic Press, p. 595.Google Scholar
  32. 30.
    See, for example, J. P. Jesson in reference 29, p. 47.Google Scholar
  33. 31.
    Shimizu, H. 1964, J. Chem. Phys. 40, 754.CrossRefGoogle Scholar
  34. 32.
    Huntress, W. T., Jr. 1963, J. Chem. Phys. 48, 3524.CrossRefGoogle Scholar
  35. 33.
    Wallach, D., and Huntress, W. T., Jr. 1969, J. Chem. Phys. 50, 1219.CrossRefGoogle Scholar
  36. 34.
    Dalai, N. S., Ripmeester, J. A., and Reddoch, A. H., paper in preparation.Google Scholar
  37. 35.
    Williams, D. E. 1966, J. Amer. Chem. Soc. 88, 5665.CrossRefGoogle Scholar
  38. 36.
    Heidberg, J., Weil, J. A., Janusanis, G. A., and Anderson, J. K. 1964, J. Chem. Phys. 41, 1033.CrossRefGoogle Scholar
  39. 37.
    Rieger, P. H., and Fraenkel, G. K. 1963, J. Chem. Phys. 39, 609.CrossRefGoogle Scholar
  40. 38.
    Nanda, D. N., Subramanium, J., and Narsimhan, P. T. 1971, Theor. Chim. Acta, 22, 369.CrossRefGoogle Scholar
  41. 39.
    See, for example, A. Carrington and A. D. McLachlan 1967, Introduction to Magnetic Resonance, Harper & Row, New York.Google Scholar
  42. 40.
    Geske, D. H., Ragle, J. L., Bambenek, M. A., and Balch, A. L. 1964, J. Amer. Chem. Soc. 86, 987.CrossRefGoogle Scholar
  43. 41.
    Lawler, R. G. and Fraenkel, G. K. 1968, J. Chem. Phys. 49, 1126CrossRefGoogle Scholar
  44. Lawler, R. G., Bolton, J. R., Karplus, M., and Fraenkel, G. K. 1967, J. Chem. Phys. 47, 2149.CrossRefGoogle Scholar
  45. 42.
    Dalai, N. S., Ripmeester J., and Walter, R. I., paper in preparation.Google Scholar
  46. 43.
    Canters, G. W., Hendriks, B. M. P., and deBoer, E. 1970, J. Chem. Phys. 53, 445.CrossRefGoogle Scholar
  47. 44.
    Hendriks, B. M. P., Canters, G. W., Corvaja, C, deBoer, J. W. M., and deBoer, E. 1971, Mol. Phys. 20, 193.CrossRefGoogle Scholar
  48. 45.
    van Broekhoven, J. A. M., Hendriks, B. M. P., and deBoer, E. 1971, J. Chem. Phys. 54, 1988.CrossRefGoogle Scholar
  49. 46.
    van Willigen, H., Plato, M., Biehl, R., Dinse, K. P., and Mobius, K. 1973, Mol. Phys. 26, 793.CrossRefGoogle Scholar
  50. 47.
    Atherton, N. M., and Day, B. 1973, J. Chem. Soc. 69, 1801.Google Scholar
  51. 48.
    Canters, G. W., deBoer, E., Hendriks, B. M. P., and van Willigen, H. 1969, Chem. Phys. Lett. 1, 627; Canters, G. W., deBoer, E., Hendriks, B. M. P., and KTaasen, A. 1969, Colloque Ampere XV.CrossRefGoogle Scholar
  52. 49.
    See, for example, C. P. Scholes in reference 2, p. 297.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • N. S. Dalal
    • 1
  1. 1.Chemistry DepartmentWest Virginia UniversityMorgantownUSA

Personalised recommendations