Advertisement

Endor Spectroscopy by Fourier Transformation of the Electron Spin Echo Envelope

  • W. B. Mims

Abstract

The envelope of electron spin echoes1–3 is the function obtained by plotting the amplitude of the spin echo signal against the time between the echo-generating microwave pulses (see Figure 1). In this function, it is often possible to observe a periodic “modulation,” which can be shown to arise from superhyperfine structure (shfs) in the resonance line. The echo decay envelope is modulated by the “ENDOR” frequencies, and it is possible, by recording the echo envelope and then Fourier transforming the result, to obtain an ENDOR spectrum. We discuss here some of the advantages and also some of the problems of this form of “echo envelope spectroscopy.”

Keywords

Electron Spin Modulation Pattern ENDOR Spectrum Fourier Cosine Time Waveform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mims, W. B. 1972, in “Electron Paramagnetic Resonance,” ed. S. Geschwind, Plenum, New York, Chapter 4.Google Scholar
  2. 2.
    Salikhov, K. M., Semenov, A. G., and Tsvetkov, Yu. D. 1976, “Electron Spin Echoes and Their Applications,” Nauka, Novosibirsk.Google Scholar
  3. 3.
    Kevan, L. 1979, in “Time Domain Electron Spin Resonance,” ed. L. Kevan and R. N. Schwartz, Wiley-Interscience, New York.Google Scholar
  4. 4.
    Mims, W. B. 1972, Phys. Rev. B5, 2409.Google Scholar
  5. 5.
    Mims, W. B. 1972, Phys. Rev. B6, 3543.Google Scholar
  6. 6.
    Kevan, L., Bowman, M. K., Narayana, P. A., Boeckman, R. K., Yudanov, V. F., and Tsvetkov, Yu. D. 1975, J. Chem. Phys. 63, 409.CrossRefGoogle Scholar
  7. 7.
    Dikanov, S. A., Yudanov, V. F., and Tsvetkov, Yu. D. 1979, J. Magn. Reson. 34, 631 (1979).Google Scholar
  8. 8.
    Mims, W. B., and Peisach, J. 1979, J. Biol. Chem. 254, 4321.Google Scholar
  9. 9.
    Merks, R. J. P., and de Beer, R. 1979, J. Phys. Chem. 83, 3319.CrossRefGoogle Scholar
  10. 10.
    Blumberg, W. E., Mims, W. B., and Zuckerman, D. 1973, Rev. Sci. Instrum. 44, 546.CrossRefGoogle Scholar
  11. 11.
    Merks, R. J. P., and de Beer, R. 1980, J. Magn. Reson. 37, 305.Google Scholar
  12. 12.
    Peisach, J., and Mims, W. B. (unpublished data).Google Scholar
  13. 13.
    Kosman, D. J., Peisach, J., and Mims, W. B. 1980, Biochemistry 19, 1304.CrossRefGoogle Scholar
  14. 14.
    Mondovi, B., Graziani, M. T., Mims, W. B., Oltzik, R., and Peisach, J. 1977, Biochemistry 16, 4198.CrossRefGoogle Scholar
  15. 15.
    See, e. g., Equations 21, 22 in Reference 3, p. 293. If A and B are less than ωI, the depth parameter k = (B/ωI)2, which is proportional to (gβ/Hor3)2.Google Scholar
  16. 16.
    Shimizu, T., Mims, W. B., Peisach, J., and Davis, J. L. 1979, J. Chem. Phys. 70, 2249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • W. B. Mims
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations