Advertisement

Développements Récents sur les Groupes de Tresses Applications à la Topologie et à l’Algèbre

  • P. Cartier
Part of the NATO ASI Series book series (NSSB, volume 361)

Abstract

Braid groups were invented by Emil Artin in 1925. The most convenient definition of the braid group B n (n is the number of strings) is as the fundamental group of the configuration space Φ n parametrizing the subsets with n points in a given pane. From a physical point of view, the space Φ n is the configuration space of n indistinguishable particles moving in two dimensions. This explains the recent interest for the braid groups in many two-dimensional physical models, in the form of parastatistics and anyons.

From a more mathematical point of view, Markov discovered in 1936 how to construct invariants of knots from linear representations of the braid groups. For a long time, very few representations of the braid groups were known. One of the greatest recent discoveries has been the invention of the Jones polynomial for knots (in 1984). The corresponding representations of B n were introduced in connection with the von Neumann algebras in operator theory, or in another form, via solutions of the Yang—Baxter equation.

In this paper, after a recollection of known facts about the combinatorics of knots, we develop consequently a categorical point of view. For a long time, categories — in the form described in the 40’s by Eilenberg and MacLane — were collections of preexisting mathematical objects connected via certain kind of transformations. In the newest developments, categories appear to be more abstract, defined via generators and relations, and encapsulating a great deal of sophisticated combinatorics.

We report on the main results of Kohno, Drinfeld and Reshetikhin, which provide a link between the main two approaches to knot invariants:
  • through the monodromy of the so-called Knizhnik—Zamolodchikov differential equations

  • or using representations of quantum groups.

After the writing of this paper—in 1989—the most dramatic developments were the definition of the Vasiliev invariants, and their explicit description by Kontsevitch, Bar-Natan and myself in 1993.

Keywords

Braid Group Jones Polynomial Pure Braid Group Produit Tensoriel Soit Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie Raisonnée

  1. 1.
    E. Artin-Collected papers (édités par S. Lang et J. Tate), Addison-Wesley, 1965. [Voir en particulier la partie consacrée à la Topologie (p. 416-498) qui contient les articles célèbres: Theorie der Zöpfe (1925), Theory of braids (1947), Braids and permutations (1947).]Google Scholar
  2. 2.
    W. Burau-Über Zopfinvarianten, Hamburg Abh. 9 (1932), p. 117–124.MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.A. Markov-Über die freie Equivalenz der geschlossenen Zöpfe, Recueil Soc. Math. Moscou 43 (1936), p. 73–78.Google Scholar
  4. 4.
    R.H. Fox-Free differential calculus I: Derivations in the free group ring, Ann. of Math. 57 (1953), p. 547–560.MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Fadell and L. Neuwirth -Configuration spaces, Math. Scand. 10 (1962), p. 111–118.MathSciNetzbMATHGoogle Scholar
  6. 6.
    R.H. Fox and L. Neuwirth-The braid groups, Math. Scand. 10 (1962), p. 119–126. Nous donnons maintenant une sélection de manuels consacrés essentiellement aux nœuds et tresses.MathSciNetzbMATHGoogle Scholar
  7. 7.
    K. Reidemeister-Knotentheorie, Erg. Math. Vol. 1, Springer (1932).Google Scholar
  8. 8.
    R.H. Crowell and R.H. Fox-Introduction to knot theory, Ginn Co. (1963) (réimprimé dans GTM, vol. 57, Springer (1977)).Google Scholar
  9. 9.
    L. Neuwirth-Knot groups, Annals Math. Studies 56, Princeton Univ. Press (1965).Google Scholar
  10. 10.
    W. Magnus, A. Karass, D. Solitar-Combinatorial group theory, Interscience/ Wiley (1966).Google Scholar
  11. 11.J. Birman-Braids, links and mapping class groups, Annals Math. Studies 82, Princeton Univ. Press (1974).Google Scholar
  12. 12.
    J. Rolfsen-Knots and links, Publish or Perish (1976).Google Scholar
  13. 13.
    L. Kauffman-Formal knot theory, Math. Notes 30, Princeton Univ. Press (1983).Google Scholar
  14. 14.
    G. Burde and H. Zieschang-Knots, W. de Gruyter (1985).Google Scholar
  15. 15.
    A. Gramain-Rapport sur la théorie classique des nœuds (1ère partie), Sém. Bourbaki, exp. no 485, juin 1976, Springer, Lect. Notes Math. 567 (1977), p. 222-237.Google Scholar
  16. 16.
    A. Douady-Nœuds et structures de contact en dimension 3 [d’après D. Bennequin], Sém. Bourbaki, exp. no 604 (février 1983), Astérisque 105-106, 1983, p. 129-148.Google Scholar
  17. 17.
    J. Birman and A. Libgober (éditeurs)-Braids, Proceedings of a Research Conference, Contemporary Math. vol. 78, American Math. Soc. (1988).Google Scholar

Catégories et dualité

  1. 1.
    S. Maclane-Natural associativity and commutativity, Rice Univ. Studies, 49 (1963), p. 28–46.MathSciNetzbMATHGoogle Scholar
  2. 2.
    S. Eilenberg and G.M. Kelly-Closed categories, in Proc. Conf. Categorical Algebra, Springer (1966).Google Scholar
  3. 3.
    S. Maclane-Categories for the working mathematician, GTM vol. 5, Springer (1974).Google Scholar
  4. 4.
    G.M. Kelly and M.L. Laplaza-Coherence for compact closed categories, J. Pure Appl. Alg. 19 (1980), p. 193–213.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    T. Tannaka-Über den Dualitätssatz der nicktkommutativen topologischen Gruppen, Tohoku Math. J. 45 (1939), p. 1–12.Google Scholar
  6. 6.
    M.G. Krein-A principle of duality for a bicompact group and a square block algebra, Dokl. Akad. Nauk SSSR 69 (1949), p. 725–728.MathSciNetGoogle Scholar
  7. 7.
    M. Takesaki-A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem, Amer. J. Math. 91 (1969), p. 529–564.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    S. Doplicher and J. Roberts-Duals of compact Lie groups realized in the Cuntz algebras and their actions on C*-algebras, J. Funct. Anal. 74 (1987), p. 96–120.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Doplicher and J. Roberts-Endomorphisms of C*-algebras, cross products and duality for compact groups, Ann. of Math. 130 (1989), p. 78–119.MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Doplicher and J. Roberts-A new duality theory for compact groups, Invent. Math. 98 (1989), p. 157–218.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    P. Ghez, R. Lima and J. Roberts-W*-categories, Pacific J. Math. 120 (1985), p. 79–109.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S.L. Woronowicz-Duality in the C*-algebra theory, Proc. Int. Cong. Math., Varsovie 1983, vol. 2, p. 1347–1350.Google Scholar
  13. 13.
    S.L. Woronowicz -Compact matrix pseudo-groups, Comm. Math. Phys. 111 (1987), p. 613–665.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    S.L. Woronowicz-Tannaka-Krein duality for compact matrix pseudo-groups. Twisted SU (N), Invent. Math. 93 (1988), p. 35–76.MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    C. Chevalle Y-Théorie des groupes de Lie, tome II: groupes algébriques, Hermann (1951).Google Scholar
  16. 16.
    P. Cartier-Dualité de Tannaka et algèbres de Lie, C.R. Acad. Sci. Paris, 242 (1956), p. 322–325.MathSciNetzbMATHGoogle Scholar
  17. 17.
    S. Saavedra-Catégories tannakiennes, Lect. Notes Math. vol. 265, Springer (1972).Google Scholar
  18. 18.
    P. Deligne et J.S. Milne-Tannakian categories in Hodge cycles, Motives and Shimura varieties, Lect. Notes Math. vol. 900, Springer (1982).Google Scholar
  19. 19.
    P. Deligne-Catégories tannakiennes, in Grothendieck’s Festschrift, Prog. in Math., Birkhäuser (1990).Google Scholar

Invariants polynomiaux des nœuds.

  1. Voici les articles originaux pour le polynôme de JonesGoogle Scholar
  2. 1.
    V. Jones-Index for subfactors, Invent. Math. 72 (1983), p. 1–25.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 2.
    V. Jones-A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), p. 103–112.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 3.
    V. Jones-Braid groups, Hecke algebras and type II1 factors, in “Geometric methods in operator algebras”, Proc. U.S.-Japan Symposium, Wiley, 1986, p. 242-273.Google Scholar
  5. 4.
    V. Jones -On a certain value of the Kauffman polynomial, Comm. Math. Phys.Google Scholar
  6. 5.
    V. Jones-Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), p. 335–388.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 6.
    V. Jones-Notes on subfactors and statistical mechanics, in “Braid group, knot theory and statistical mechanics” (C.N. Yang et M.L. Ge, éditeurs), World Scientific, 1989, p. 1-25.Google Scholar
  8. 7.
    A. Ocneanu-Quantized groups, string algebras and Galois theory for algebras, prépublication Penn. State Univ., 1985.Google Scholar
  9. 8.
    A. Ocneanu-A polynomial invariant for knots: a combinatorial and an algebraic approach Google Scholar
  10. 9.
    H. Wenzl-Representations of Hecke algebras and subfactors, Thèse, Univ. of Pennsylvania, 1985.Google Scholar
  11. 10.
    H. Wenzl-Hecke algebras of type A n and subfactors, Invent. Math. 92 (1988), p. 349–383.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 11.
    H. Wenzl-Braid group representations and the quantum Yang-Baxter equation, La généralisation en un polynôme à deux variables est contenue dans l’article-annonceGoogle Scholar
  13. 12.
    P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millett, A. Ocneanu-A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), p. 239–246.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 13.
    A. Connes-Indice des sous-facteurs, algèbres de Hecke et théorie des nœuds, Sém. Bourbaki, exp. no 647, juin 1985, Astérisque 133-134 (1986), p. 289-308.Google Scholar
  15. 14.
    F. Goodman, P. DE LA Harpe et V. Jones-Coxeter-Dynkin diagrams and towers of algebras, M.S.R.I. Pubi. vol. 14, Springer (1989).Google Scholar
  16. 15.
    P. De La Harpe, M. Kervaire et C. Weber-On the Jones polynomial, Ens. Math. 32 (1986), p. 271–335.zbMATHGoogle Scholar
  17. 16.
    P. Vogel-Représentations et traces des algèbres de Hecke, polynôme de Jones-Conway, Ens. Math. 34 (1988), p. 333–356.zbMATHGoogle Scholar
  18. 17.
    P.N. Hoefsmit-Representations of Hecke algebras of finite groups with BN pairs of classical type, Thèse, Univ. of British Columbia, 1974.Google Scholar
  19. 18.
    M. Atiyah-Topological quantum field theories, Pubi. I.H.E.S. 68 (1988), p. 175–186.MathSciNetzbMATHGoogle Scholar
  20. 19.
    N. Reshetikhin and V. Turaev-Invariants of 3-manifolds via link polynomial and quantum groups Google Scholar
  21. 20.
    E. Witten-Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), p. 351–399.MathSciNetADSzbMATHCrossRefGoogle Scholar

Groupes quantiques et invariants des nœuds

  1. 1.
    V. Drinfeld-Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985), p. 254–258.Google Scholar
  2. 2.
    V. Drinfeld-Quantum groups, Proc. Int. Cong. Math., Berkeley 1986, vol. 1, p. 798–820.Google Scholar
  3. 3.
    J.-L. Verdier-Groupes quantiques [d’après V. Drinfeld], Sém. Bourbaki, exp. n o 685, juin 1987, Astérisque 152-153 (1987), p. 305-319.Google Scholar
  4. 4.
    J. Jimbo-A q-analogue of U (gℓ (N+1)), Hecke algebras and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), p. 247–252.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Kirillov and N. Reshetikhin-Representations of the algebra U q (sℓ (2)), q-orthogonal polynomials and invariants of links, Lomi preprint, Leningrad, 1988.Google Scholar
  6. 6.
    G. Lusztig-Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), p. 237–249.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Rosso-Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), p. 581–593. [Corrections dans la thèse de l’auteur.]MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    V. Drinfeld-Sur les algèbres de Hopf presque cocommutatives, à paraître dans “Algebra and Analysis”, Leningrad, 1989 (en russe).Google Scholar
  9. 9.
    V. Drinfeld-Quasi-algèbres de Hopf Algebra and Analysis, vol. 1, no 2 (1989), p. 30-46 (en russe).Google Scholar
  10. 10.
    N. Reshetikhin-Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, I, II, Lomi preprint, Léningrad, 1988.Google Scholar
  11. 11.
    N. Reshetikhin-Algèbres de Hopf quasi-triangulaires et invariants des nœuds, Algebra and Analysis, vol. 1, no 2 (1989), p. 169–188 (en russe).Google Scholar
  12. 12.
    N. Reshetikhin, L. Takhtadjan et L. Faddeev-Groupes de Lie quantiques et algèbres de Lie, Algebra and Analysis, vol. 1, n o 2 (1989), p. 178–205 (en russe).Google Scholar
  13. 13.
    V. Turaev-The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), p. 527–553.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    V. Turaev-Algebra of loops on surfaces, algebra of knots, and quantization, Lomi preprint, Léningrad, 1988.Google Scholar
  15. 15.
    C.M. Ringel-Hall algebras and quantum groups, (Bielefeld, RFA).Google Scholar

Topologie des espaces de configuration

  1. 1.
    V.I. Arnold-The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), p. 227–231.MathSciNetGoogle Scholar
  2. 2.
    V.I. Arnold-Topological invariants of algebraic functions II, Funct. Anal. Appl. 4 (1970), p. 91–98.CrossRefGoogle Scholar
  3. 3.
    E. Brieskorn-Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), p. 57–61.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    E. Brieskorn-Sur les groupes de tresses [d’après V.I. Arnold], Sém. Bourbaki, exp. no 401, novembre 1971, Springer, Lect. Notes Math. 317 (1973), p. 21-44.Google Scholar
  5. 5.
    P. Cartier-Arrangements d’hyperplans: un chapitre de Géométrie combinatoire, Sém. Bourbaki, exp. n o 582, novembre 1980, Springer, Lect. Notes Math. 901 (1982), p. 1–22.MathSciNetGoogle Scholar
  6. 6.
    F. A. Garside-The braid groups and other groups, Quart. J. Math. Oxford 20 (1969), p. 235–254.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    E. Brieskorn and K. Saito-Artin-Gruppen und Coxeter-gruppen, Invent. Math. 17 (1972), p. 245–271.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    P. Deligne-Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), p. 273–302.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    M. Falk and R. Randell-Pure braid groups and products of free groups, in “Braids”, Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 217–228.MathSciNetCrossRefGoogle Scholar

Équations différentielles et monodromie

  1. 1.
    P. Cartier-Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Sém. Bourbaki, exp. no 687, novembre 1987, Astérisque 161-162 (1988), p. 31–52.MathSciNetGoogle Scholar
  2. Voici quelques références complétant la bibliographie de cet exposéGoogle Scholar
  3. 2.
    A.A. Belavin and V. Drinfeld-Solution of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982), p. 1–29.MathSciNetCrossRefGoogle Scholar
  4. 3.
    T. Kohno-Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. Sci. 62, série A (1986), p. 144–147.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 4.
    T. Kohno-One-parameter family of linear representations of Artin’s braid groups, Adv. Stud, in Pure Math. 12 (1987), p. 189–200.MathSciNetGoogle Scholar
  6. 5.
    T. Kohno-Linear representations of braid groups and classical Yang-Baxter equations, in “Braids”, Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 339–363.MathSciNetCrossRefGoogle Scholar
  7. 6.
    A.B. Givental and V.V. Shekhtman-Monodromy groups and Hecke algebras, Usp. Math. Nauk 12 no 4 (1987), p. 138.Google Scholar
  8. 7.
    K. Aomoto-A construction of integrable differential system associated with braid groups, in “Braids”, Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 1–11.MathSciNetCrossRefGoogle Scholar
  9. 8.
    A.B. Givental-Twisted Picard-Lefschetz formulas, Funct. Anal. Appl. 22 (1988), p. 10–18.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 9.
    A.A. Belavin, A.N. Polyakov and A.B. Zamolodchikov-Infinite dimensional symmetries in two-dimensional quantum field theory, Nucl. Phys. B241 (1984), p. 333–380.MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    V.G. Knizhnik and A.B. Zamolodchikov-Current algebras and Wess-Zumino models in two dimensions, Nucl. Phys. B247 (1984), p. 83–103.MathSciNetADSCrossRefGoogle Scholar
  12. 11.
    A. Tsuchiya and Y. Kanie-Vertex operators in conformai field theory on P 1 and monodromy representations of braid group, Adv. Studies in Pure Math. 12 (1988), p. 297–372.MathSciNetGoogle Scholar

Mécanique statistique et théorie des nœuds

  1. 1.
    C.N. Yang and M.L. Ge (éditeurs)-Braid group, knot theory and statistical mechanics, Adv. Series Math. Phys. vol. 9, World Scientific (1989).Google Scholar
  2. 2.
    M.L. GE and N.C. Song (éditeurs)-Conformal field theory and braid group (Nankai lectures in mathematical physics, 1988), World Scientific (1989).Google Scholar
  3. 3.
    L. Kauffman-Statistical mechanics and the Jones polynomial, in “Braids”, Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 263–297.MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Kauffman-New invariants in the theory of knots, Astérisque 163-164 (1988), p. 137–219.MathSciNetGoogle Scholar
  5. 5.
    L. Kauffman-Knots, abstract tensors and the Yang-Baxter equation, prépublication IHES/M/89/24 (avril 1989).Google Scholar
  6. 6.
    R.J. Baxter-Exactly solved models in statistical mechanics, Acad. Press (1982).Google Scholar
  7. 7.
    F.Y WU-The Potts model, Rev. Mod. Phys. vol. 54, n o 1, Janvier 1982.Google Scholar
  8. 8.
    R. Penrose-Applications of negative dimensional tensors, in Comb. Math. and its Appl. (Welsch éditeur), Acad. Press (1971).Google Scholar
  9. 9.
    L. Kauffman-State models and the Jones polynomial, Topology 26 (1987), p. 395–407.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    V. Jones-On knot invariants related to statistical mechanics models, Pac. J. Math. 138 (1989), p.Google Scholar
  11. 11.
    M. Rosso-Groupes quantiques et modèles à vertex de V, Jones en théorie des nœuds, C.R. Acad. Sci. Paris, Série I, vol. 307 (1988), p. 207–210.MathSciNetzbMATHGoogle Scholar

Applications des tresses à la physique

  1. 1.
    V. Dotsenko and V. Fateev-Conformai algebra and multipoint correlation functions in 2D statistical mechanics, Nucl. Phys. B240 (1984), p. 312-.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. FRöhlich-Statistics of fields, the Yang-Baxter equation and the theory of braids and links, Cargèse lectures 1987, G.’t Hooft (éditeur), Plenum Press (1988).Google Scholar
  3. 3.
    J. FRöhlich-Statistics and monodromy in two-and three-dimensional quantum field theory, in “Differential geometrical methods in mathematical physics”, K. Bleuler et M. Werner (éditeurs), Dordrecht (1988).Google Scholar
  4. 4.
    K.H. Rehren and B. Shroer-Einstein causality and Artin braids, prépublication, Freie Universität Berlin, 1988.Google Scholar
  5. 5.
    J. FRöhlich and C. King-Two-dimensional conformai field theory and three-dimensional topology, prépublication ETH/TH/89-9, Zürich, 1989.Google Scholar
  6. 6.
    G. Felder, J. FRöhlich and G. Keller-Braid matrices and structure constants for minimal conformal models, Comm. Math. Phys. 124 (1989), p. 647–664.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    J. FRöHlich, G. Gabbiani and P.A. Marchetti-Braid statistics in three-dimensional local quantum theory, in the Proceedings of the Banff Summer School in Theoretical physics (août 1989) on “Physics, Geometry and Topology”.Google Scholar

Applications arithmétiques des groupes de tresses

  1. 1.
    A. Grothendieck-Esquisse d’un programme, Notes miméographiées, Univ. Montpellier, 1982.Google Scholar
  2. 2.
    R. Coleman-Dilogarithms, regulators and p-adic L-functions, Invent, Math. 69 (1982), p. 171–208.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Y. Ihara-Profinite braid groups, Galois representations and complex multiplication, Ann. of Math. 123 (1986), p. 3–106.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Ihara-On Galois representations arising from towers of coverings of P 1 \{0, 1, ∞}, Invent. Math. 86 (1986), p. 427–459.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    B.H. Matzat-Konstruktive Galois Theorie, Lect. Notes Math. 1284, Springer (1987).Google Scholar
  6. 6.
    T. Kohno and T. ODA-The lower central series of the pure braid group of an algebraic curve, Adv. Studies in Pure Math. 12 (1988).Google Scholar
  7. 7.
    P. Deligne-Le groupe fondamental de la droite projective moins trois points, in “Galois groups over Q”, M.S.R.I. Publ. vol. 16, Springer, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • P. Cartier
    • 1
  1. 1.Département de Mathématique et InformatiqueÉcole Normale SupérieureParis Cedex 05France

Personalised recommendations