Path Integral Simulation of Long-Time Dynamics in Quantum Dissipative Systems

  • Nancy Makri
Part of the NATO ASI Series book series (NSSB, volume 361)

Abstract

Feynman’s path integral approach to time-dependent quantum mechanics1 has found wide application in many areas of physics. Its most celebrated successes include situations where the effects of a dissipative environment on the system of interest can be adequately represented via a bath of harmonic oscillators. Due to its Gaussian character, the multidimensional bath can be integrated out,2 giving rise to reduced-dimension descriptions of the dynamics which in simple cases are amenable to a host of analytic approximations. Another major field where path integral ideas have proven extremely useful is quantum statistical mechanics.3 Expressing equilibrium averages of many-body systems in path integral form allows, after appropriate discretization, numerical evaluation via stochastic integration schemes.4 By contrast, the use of numerical methods to compute real-time path integral expressions of many-particle systems has not been met with success. The reason behind the failure of numerical schemes lies in the oscillatory nature of the quantum mechanical propagator which renders stochastic integration methods inappropriate.5

Keywords

Path Segment Primary Charge Separation Propagator Matrix Quantum Dissipative System Dissipative Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20:367 (1948).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. P. Feynman and F. L. Vernon, Jr., The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24:118 (1963).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R. P. Feynman, Statistical Mechanics, Addison-Wesley, Redwood City (1972).Google Scholar
  4. 4.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, H. Teller, and E. Teller, J. Chem. Phys. 21:1087 (1953).ADSCrossRefGoogle Scholar
  5. 5.
    N. Makri, Feynman path integration in quantum dynamics, Comp. Phys. Comm. 63:389 (1991).ADSMATHCrossRefGoogle Scholar
  6. 6.
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and M. Zwerger, Dynamics of the dissipati ve two-state system, Rev. Mod. Phys. 59:1 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    R Kubo, M. Toda, and N. Hashitsume, Statistical Physics, 2nd ed., Springer-Verlag, Heidelberg (1991).MATHGoogle Scholar
  8. 8.
    N. Makri, Improved Feynman propagators on a grid and non-adiabatic corrections within the path integral framework, Chem. Phys. Lett. 193:435 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121:587 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    N. Makri, Numerical path integral techniques for long-time quantum dynamics of dissipative systems, J. Math. Phys. 36:2430 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    D. E. Makarov and N. Makri, Path integrals for dissipative systems by tensor multiplication: condensed phase quantum dynamics for arbitrarily long time, Chem. Phys. Lett. 221:482 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    N. Makri and D. E. Makarov, Tensor multiplication for iterative quantum time evolution of reduced density matrices. I. Theory, J. Chem. Phys. 102:4600 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    N. Makri and D. E. Makarov, Tensor multiplication for iterative quantum time evolution of reduced density matrices. II. Numerical methodology, J. Chem. Phys. 102:4611 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    E. Sim and N. Makri, Tensor propagator with weight-selected paths for quantum dissipative dynamics with long-memory kernels, Chem. Phys. Lett. 249:224 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    E. Sim and N. Makri, Filtered propagator functional for iterative dynamics of quantum dissipative systems, Comp. Phys. Commun. (in press).Google Scholar
  16. 16.
    Z. Bacic and J. C. Light, Theoretical methods for rovibrational states of floppy molecules, Annu. Rev. Phys. Chem. 40:469 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    M. Topaler and N. Makri, System-specific discrete variable representations for path integral calculations with quasi-adiabatic propagators, Chem. Phys. Lett. 210:448 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    H.A. Kramers, Brownian motion an a field of force and the diffusion model of chemical reactions, Physica (Utrecht) 7:284 (1940).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    G. R. Fleming and P. Hänggi, Activated barrier crossing, World Scientific, Singapore (1993).Google Scholar
  20. 20.
    M. Topaler and N. Makri, Quantum rates for a double well coupled to a dissipative bath: accurate path integral results and comparisons with approximate theories, J. Chem. Phys 101:7500 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    W. H. Miller, S. D. Schwartz, and J. W. Tromp, Quantum mechanical rate constants for bimolecular reactions, J. Chem. Phys. 79:4889 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    P. G. Wolynes, Quantum theory of activated events in condensed phases, Phys. Rev. Lett. 47:968 (1981).ADSCrossRefGoogle Scholar
  23. 23.
    G. A. Voth, Path integral centroid methods in quantum statistical mechanics and dynamics, Adv. Chem. Phys. 93:135 (1996).CrossRefGoogle Scholar
  24. 24.
    P. Hänggi, E. Pollak, and H. Grabert, Report No. 215, 1989.Google Scholar
  25. 25.
    I. Rips and E. Pollak, Quantum Kramers model: solution of the turnover problem, Phys. Rev. A 41:5366 (1990).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    J. N. Onuchic and P. G. Wolynes, Classical and quantum pictures of reaction dynamics in condensed matter: resonances, dephasing, and all that, J. Phys. Chem. 92:6495 (1988).CrossRefGoogle Scholar
  27. 27.
    F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Coherent destruction of tunneling, Phys. Rev. Lett. 67:516 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    F. Grossmann and P. Hänggi, Localization in a driven two-level dynamics, Europhysics Letters 18:571 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    M Grifoni, M. Sassetti, J. Stockburger, and U. Weiss, Nonlinear response of a periodically driven damped two-state system, Phys. Rev. E 48:3497 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    T. Dittrich, B. Oeschlagel, and P. Hänggi, Driven tunneling with dissipation, Europhys. Lett. 22:5 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    D. E. Makarov and N. Makri, Control of dissipative tunneling dynamics by continuous wave electromagnetic fields: localization and large-amplitude coherent motion, Phys. Rev. E 52:5863 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    N. Makri and Liqiang Wei, Universal delocalization rate in driven dissipative two-level systems at high temperature, Phys. Rev. E (in press).Google Scholar
  33. 33.
    N. Makri, Stabilization of localized states in dissipative tunneling systems interacting with monochromatic fields, J. Chem. Phys. (in press).Google Scholar
  34. 34.
    D. E. Makarov and N. Makri, Stochastic resonance and nonlinear response in double quantum well structures, Phys. Rev. B 52:R2257 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    S. Schmidt, T. Arlt, P. Hamm, H. Hüber, T. Nägele, J. Wachtveitl, M. Meyer, H. Scheer and W. Zinth, Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers, Chem. Phys. Lett. 223:116 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    R. Egger, C. H. Mak, and U. Weiss, Rate concept and retarted master equations for dissipative tight-binding models, Phys. Rev. E 50:R655 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    R. Egger and C. H. Mak (unpublished).Google Scholar
  38. 38.
    N. Makri, E. Sim, D. E. Makarov, and M. Topaler, Long-time quantum simulation of the primary charge separation in bacterial photosynthesis, Proc. Natl. Acad. Sci. U.S.A. 93:3926 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    E. Sim and N. Makri, Path integral simulation of charge transfer dynamics in photosynthetic reaction centers, J. Phys. Chem. (submitted).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Nancy Makri
    • 1
  1. 1.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations