Quantum Equivalence Principle

  • H. Kleinert
Part of the NATO ASI Series book series (NSSB, volume 361)


A simple mapping procedure is presented by which classical orbits and path integrals for the motion of a point particle in flat space can be transformed directly into those in curved space with torsion. Our procedure evolved from well-established methods in the theory of plastic deformations, where crystals with defects are described mathematically as images of ideal crystals under active nonholonomic coordinate transformations.

Our mapping procedure may be viewed as a natural extension of Einstein’s famous equivalence principle. When applied to time-sliced path integrals, it gives rise to a new quantum equivalence principle which determines short-time action and measure of fluctuating orbits in spaces with curvature and torsion. The nonholonomic transformations possess a nontrivial Jacobian in the path integral measure which produces in a curved space an additional term proportional to the curvature scalar R, thus canceling a similar term found earlier by DeWitt. This cancellation is important for correctly describing semiclassically and quantum mechanically various systems such as the hydrogen atom, a particle on the surface of a sphere, and a spinning top. It is also indispensable for the process of bosonization, by which Fermi particles are redescribed by those fields.


Curvature Scalar Curve Space Point Particle Schrodinger Equation Christoffel Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. S. DeWitt, Rev. Mod. Phys. 29, 377 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    B. Podolsky, Phys. Rev. 32, 812 (1928).ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    K. S. Cheng, J. Math. Phys. 13, 1723 (1972)ADSCrossRefGoogle Scholar
  4. H. Kamo and T. Kawai, Prog. Theor. Phys. 50, 680 (1973)ADSCrossRefGoogle Scholar
  5. T. Kawai, Found. Phys. 5, 143 (1975)MathSciNetADSCrossRefGoogle Scholar
  6. H. Dekker, Physica A 103, 586 (1980)MathSciNetADSCrossRefGoogle Scholar
  7. G. M. Gavazzi, Nuovo Cimento A 101, 241 (1981).ADSCrossRefGoogle Scholar
  8. A good survey over similar attempts is given by M. S. Marinov, Phys. Rep. 60, 1 (1980).MathSciNetADSCrossRefGoogle Scholar
  9. [4]
    Among the most widely discussed procedures was a postpoint discretization due to Ito and a midpoint discretization due to Stratonovich, with different mathematical advantages. For a detailed discussion see the textbooks H. Risken, The Fokker-Planck Equation, second edition, Springer, 1983, Vol. 18Google Scholar
  10. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Springer, Berlin 1985.CrossRefGoogle Scholar
  11. A recent description of the relation between time slicing and Ito versus Stratonovich calculus can be found in H. Nakazato, K. Okano, L. Schülke, and Y. Yamanaka, Nucl. Phys. B 346, 611 (1990).ADSCrossRefGoogle Scholar
  12. Stochastic differential equations in curved spaces are developed in K. D. Elworthy, Stochastic differential equations on manifolds, Cambridge Univ. Press, 1982Google Scholar
  13. M. Emery, Stochastic calculus in manifolds, Springer, Berlin 1989.zbMATHCrossRefGoogle Scholar
  14. [5]
    R. Graham, Z. Phys. B 26, 397 (1977).MathSciNetADSCrossRefGoogle Scholar
  15. [6]
    K. D. Elworthy, Path Integration on Manifolds, in Mathematical Aspects of Superspace, eds. H.-J. Seifert, C. Clarke, and A. Rosenblum, Reidei, 1984.Google Scholar
  16. [7]
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, New York, 1965.zbMATHGoogle Scholar
  17. [8]
    D. J. Simms and N. M. J. Woodhouse, lectures on geometric quantization, Springer, Berlin 1976zbMATHGoogle Scholar
  18. J. Sniatycki, Geometric quantization and quantum mechanics, Springer, Berlin 1980zbMATHCrossRefGoogle Scholar
  19. P. L. Robinson and J. H. Rawnsley, The metaplectic representation, Mpc structures, and geometric quantization, publ. by the American Mathematical Society in the series Memoirs of the American Mathematical Society no. 410 0065-9266, Providence, R. I., 1989.Google Scholar
  20. [9]
    For details and more references see H. Kleinert, Gauge Fields in Condensed Matter, Vol. I Superflow and Vortex Lines, pp. 1-744, and Vol. II Stresses and Defects, World Scientific, Singapore 1989, pp. 744-1443.Google Scholar
  21. [10]
    K. Kondo, in: Proc. 2nd Japan Nat. Congr. Applied Mechanics, Tokio, 1952Google Scholar
  22. B. A. Bilby, R. Bullough and E. Smith, Proc. R. Soc. London A 231, 263 (1955)MathSciNetADSCrossRefGoogle Scholar
  23. E. Kröner, in: Physics of defects, Les Houches summer school XXXV, North-Holland, Amsterdam 1981.Google Scholar
  24. [11]
    H. Duru and H. Kleinert, Phys. Lett. B 84, 185 (1979)MathSciNetADSCrossRefGoogle Scholar
  25. Fortschr. d. Phys. 30, 401 (1982).Google Scholar
  26. [12]
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, second edition, World Scientific, Singapore 1995.zbMATHGoogle Scholar
  27. [13]
    H. Kleinert, Mod. Phys. Lett. A 4, 2329 (1989).MathSciNetADSCrossRefGoogle Scholar
  28. [14]
    H. Kleinert, Phys. Lett. B 236, 315 (1990).MathSciNetADSCrossRefGoogle Scholar
  29. [15]
    P. Fiziev and H. Kleinert, New Action Principle for Classical Particle Trajectories In Spaces with Torsion, Europh. Lett. 35, 241 1996 (hep-th/9503074 and
  30. [16]
    A. Pelster and H. Kleinert, FU-Berlin preprint, May 1996 (gr-qc/9605028 and
  31. [17]
    Our notation for the geometric quantities in spaces with curvature and torsion is the same as in J. A. Schouten, Ricci Calculus, Springer, Berlin 1954.Google Scholar
  32. [18]
    P. Fiziev and H. Kleinert, Euler Equations for Rigid-Body — A Case for Autoparallel Trajectories in Spaces with Torsion, Berlin preprint 1995 (hep-th/9503075 and
  33. [19]
    H. Kleinert, Collective Quantum Fields, Lectures presented at the First Erice Summer School on Low-Temperature Physics, 1977, Fortschr. Physik 26, 565-671 (1978).Google Scholar
  34. See also the predecessorsGoogle Scholar
  35. H. Kleinert, Field Theory of Collective Excitations—A Soluble Model, Phys. Lett. B 69, 9 (1977), as well as the derivation of an SU (3)×SU (3) chirally invariant field theory of mesons from a quark theory in.MathSciNetADSCrossRefGoogle Scholar
  36. H. Kleinert, Hadronization of Quark Theories and a Bilocal form of QED, Phys. Lett. B 62, 429 (1976)ADSCrossRefGoogle Scholar
  37. H. Kleinert, On the Hadronization of Quark Theories, Lectures presented at the Erice Summer Institute 1976, in Understanding the Fundamental Constituents of Matter, Plenum Press, New York, 1978, A. Zichichi ed., pp. 289-390.Google Scholar
  38. [20]
    L. P. Gorkov, Sov. Phys. JETP 9, 1364 (1959).MathSciNetGoogle Scholar
  39. [21]
    V. L. Ginzburg and L. D. Landau, Eksp. Teor. Fiz. 20, 1064 (1950).Google Scholar
  40. [22]
    A. L. Leggett, Rev. Mod. Phys. 47, 331 (1975).ADSCrossRefGoogle Scholar
  41. [23]
    K. D. Schotte and U. Schotte, Phys. Rev. 182, 479 (1969); see alsoMathSciNetADSCrossRefGoogle Scholar
  42. S. Tomonaga, Progr. Theor. Phys. 5, 63 (1950).Google Scholar
  43. [24]
    For a review see: D. R. Bes, R. A. Broglia, Lectures delivered at “E. Fermi” Varenna Summer School, Varenna, Como Italy, 1976. For recent studies: D. R. Bes, R. A. Broglia, R. Liotta, B. R. Mottelson, Phys. Letters B 52, 253 (1974); B 56, 109 (1975), Nuclear Phys. A 260, 127 (1976).ADSCrossRefGoogle Scholar
  44. See also: R. W. Richardson, J. Math. Phys. 9, 1329 (1968).ADSCrossRefGoogle Scholar
  45. R. W. Richardson, Ann. Phys. (N. Y.) 65, 249 (1971) and N. Y. U. Preprint 1977, as well as references therein.ADSCrossRefGoogle Scholar
  46. [25]
    J. Hubbard, Phys. Rev. Letters 3, 77 (1959)ADSCrossRefGoogle Scholar
  47. B. Mühlschlegel, J. Math. Phys., 3, 522 (1962)ADSzbMATHCrossRefGoogle Scholar
  48. J. Langer, Phys. Rev. A 134, 553 (1964)ADSGoogle Scholar
  49. T. M. Rice, Phys. Rev. A 140 1889 (1965); J. Math. Phys. 8, 1581 (1967).MathSciNetADSGoogle Scholar
  50. A. V. Svidzinskij, Teor. Mat. Fiz. 9, 273 (1971)Google Scholar
  51. D. Sherrington, J. Phys. C 4, 401 (1971).ADSCrossRefGoogle Scholar
  52. [26]
    E. Witten, Commun. Math. Phys. 92, 455 (1984)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. P. DiVecchia and P. Rossi, Phys. Lett. B 140, 344 (1984)MathSciNetADSCrossRefGoogle Scholar
  54. P. DiVecchia, B. Durhuus and J. L. Petersen, Phys. Lett. B 144, 245 (1984)MathSciNetADSCrossRefGoogle Scholar
  55. Y. Frishman, Phys. Lett. B 146, 204 (1984)MathSciNetADSCrossRefGoogle Scholar
  56. E. Abdalla and M. C. B. Abdalla, Nucl. Phys. B 225, 392 (1985)MathSciNetADSCrossRefGoogle Scholar
  57. D. Gonzales and A. N. Redlich, Phys. Lett. B 147, 150 (1984)ADSCrossRefGoogle Scholar
  58. C. M. Naón, Phys. Rev. D 31, 2035 (1985)MathSciNetADSCrossRefGoogle Scholar
  59. See also the recent development by P. H. Damgaard, H. B. Nielsen, and R. Sollacher, Nuclear Phys. B 385, 227 (1992) (hep-th/9407022)MathSciNetADSCrossRefGoogle Scholar
  60. P. H. Damgaard and R. Sollacher, Cern preprint (hep-th/9407022);A. N. Theron; F. A. Schaposnik, F. G. Scholtz and H. B. Geyer, Nucl. Phys. B 437, 187 (1995) (hep-th/9410035)MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. C. P. Burgess and F. Quevedo, Phys. Lett. B 329 (1994) 457; Nucl. Phys. B 421, 373 (1994)MathSciNetADSCrossRefGoogle Scholar
  62. C. P. Burgess, A. Lutkin, and F. Quevedo, Phys. Lett. B 336, 18 (1994)MathSciNetADSCrossRefGoogle Scholar
  63. J. Fröhlich, R. Götschmann and P. A. Marchetti, preprint (hep-th/9406154).Google Scholar
  64. [27]
    S. Coleman, Phys. Rev. D 11, 2088 (1975)ADSCrossRefGoogle Scholar
  65. S. Mandelstam, Phys. Rev. D 11, 3026 (1975)MathSciNetADSCrossRefGoogle Scholar
  66. B. Schroer and T. T. Truong, Phys. Rev. D 15, 1684 (1977).ADSCrossRefGoogle Scholar
  67. [28]
    For a semiclassical study of the model at finite times see H. Kleinen and H. Reinhardt, Nucl. Phys. A 332, 33 (1979).Google Scholar
  68. [29]
    H. Kleinert, Nonabelian Bosonization as a Nonholonomic Transformations from Flat to Curved Field Space. FU-Berlin preprint 1996Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • H. Kleinert
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations