Adiabatic Coupling in the Helium and the Beryllium Series

  • Andreas Savin
  • François Colonna
  • Jean-Marie Teuler

Abstract

Switching on the electron-electron interaction has provided a means for a deeper understanding of the Kohn-Sham formalism [1,2,3,4]. In recent years this adiabatic coupling was also used to produce density functionals (see, e.g., Ref. [5]) among which the so-called hybrid schemes [6] had great success. It was conjectured that the local density approximation works well for values of the coupling constant close to one (cf. [7]). Little is known, however, about the actual behavior of the correlation energy in real systems (see, e.g., [8]). The present paper shows results for simple systems (the helium and the beryllium series) often used as a benchmark in density functional calculations, as they are known not to behave properly in the local density approximation (LDA) [9].

Keywords

Local Density Approximation Correlation Energy Configuration Interaction Slater Determinant Adiabatic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kohn and L. Sham, Phys. Rev. A140, 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. Harris and R.O. Jones, J. Phys. F 4, 1170 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Zhao, M. Levy, and R. G. Parr, Phys. Rev. A 47, 918 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    A.D. Becke, J. Chem. Phys. 98, 1372 and 5648 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    K. Burke, J.P. Perdew, and M. Ernzerhof, chapter in this volume.Google Scholar
  8. 8.
    R. Hood, M.Y. Chou, A.J. Williamson, G. Rajagopal, R.J. Needs, and W.M.C. Foulkes, Phys. Rev. Lett. 78, 3359 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Perdew, E.R. McMullen, and A. Zunger, Phys. Rev. A 23, 2785 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    S.H. Vosko, L. Wilk, H. Nusair, Can. J. Phys. 58, 1200 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    K. Burke, J.P. Perdew, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, M. J. O. Deegan, S. T. Elbert, C. Hampel, W. Meyer, K. Peterson, R. Pitzer, A. J. Stone, and P. R. Taylor.Google Scholar
  14. 14.
    M. Levy, Phys. Rev. A 43, 4637 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    M. Levy and J.P. Perdew, Phys. Rev. A 32, 2010 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    A. Savin, Phys. Rev. A 52, R1805 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    F. Aryasetiawan and M. J. Stott, Phys. Rev. B 34, 4401 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    Q. Zhao and R. G. Parr, Phys. Rev. A 46, 2337 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    Stephen Wolfram, The Mathematica Book, 3rd edition (Wolfram Media/ Cambridge University Press, 1996).MATHGoogle Scholar
  20. 20.
    M. Levy, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. Seminario (Elsevier, Amsterdam, 1996).Google Scholar
  21. 21.
    M. Levy and J.P. Perdew, in The Single-Particle Density in Physics and Chemistry, edited by N.H. March and B.M. Deb (Academic, London, 1987).CrossRefGoogle Scholar
  22. 22.
    W. Yang, in Density Matrices and Density Functionals, edited by R. Erdahl and V.H. Smith, Jr. (Reidel, Boston, 1987).Google Scholar
  23. 23.
    E. Wigner, Phys. Rev. 46, 1002 (1934).ADSCrossRefGoogle Scholar
  24. 24.
    P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    S.J. Chakravorty, S.R. Gwaltney, E.R. Davidson, F.A. Parpia, and C. Froese Fischer, Phys. Rev. A 47, 3649 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes (Cambridge Univ. Press, 1992).Google Scholar
  27. 27.
    E.H. Lieb Int. J. Quantum. Chem., 24, 243 (1983).CrossRefGoogle Scholar
  28. 28.
    K.A. Dawson and N.H. March, J. Chem. Phys. A 81, 5850 (1984).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    N.H. March and R.F. Nalewajski, Phys. Rev. A 35, 525 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    A. Nagy and N.H. March, Phys. Rev. A 39, 5512 (1989).ADSCrossRefGoogle Scholar
  31. 31.
    A. Holas and N.H. March, Phys. Rev. A 44, 5521 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    Q. Zhao and R. G. Parr, J. Chem. Phys. 98, 543 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Andreas Savin
    • 1
  • François Colonna
    • 1
  • Jean-Marie Teuler
    • 2
  1. 1.Laboratoire de Chimie Théorique (CNRS)Université Pierre et Marie CurieParisFrance
  2. 2.CNRS-IDRISOrsay CedexFrance

Personalised recommendations