A Functional Theory of Interacting Local Spins, Spin Polarized Electrons, and Ions: Half Metallic Magnets

  • A. K. Rajagopal

Abstract

Magnetism of manganites such as (La,Ba)MnO3 has a long history going back to 1950, with the discovery of ferromagnetism and metallic conduction upon doping [1]. Zener [2] proposed to explain these phenomena in terms of a “double exchange” mechanism. This spawned several important developments [3,4,5] leading to new implications of this model. Most recently, the observation of colossal magnetoresistance (CMR) effects [6,7] in these systems has rekindled interest in studying the detailed interplay of magnetism, electronic transport, and structure in these materials. Electronic structure calculations on these systems have been performed [8] and theoretical investigations using modern techniques [9,10,11] have shown the need for self-consistent coupled fields of electrons, localized spins, and ions in this system. In this paper, we offer a functional theory of this type.

Keywords

Density Matrix Green Function Localize Spin Spin Polarize Electron Itinerant Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.H. Jonker and J.H. Van Santen, Physica 16, 337 (1950).ADSCrossRefGoogle Scholar
  2. J.H. Van Santen and G.H. Jonker, Physica. 16, 599 (1950).ADSCrossRefGoogle Scholar
  3. 2.
    C. Zener, Phys. Rev. 81, 440 (1951): ibid 82, 403 (1951).ADSMATHCrossRefGoogle Scholar
  4. 3.
    P.W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).ADSCrossRefGoogle Scholar
  5. 4.
    P.G. de Gennes, Phys. Rev. 118, 141 (1960).ADSCrossRefGoogle Scholar
  6. 5.
    K. Kubo and N. Ohata, J. Phys. Soc. Japan 33, 21 (1972).ADSCrossRefGoogle Scholar
  7. 6.
    A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14 103 (1995).CrossRefGoogle Scholar
  8. 7.
    A. Asamitsu, Y. Moritomo. Y. Tomioka, T. Arima, and Y. Tokura, Nature (London) 373, 407 (1995).ADSCrossRefGoogle Scholar
  9. 8.
    W.E. Pickett and D.J. Singh, Phys. Rev. B 53, 1146 (1996).ADSCrossRefGoogle Scholar
  10. 9.
    A.J. Mills, P.B. Littlewood, and B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).ADSCrossRefGoogle Scholar
  11. 10.
    H. Röder, J. Zang, and A.R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).ADSCrossRefGoogle Scholar
  12. 11.
    I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. Lett. 76, 4825 (1996).ADSCrossRefGoogle Scholar
  13. 12.
    E.K.U. Gross, J.F. Dobson, and M. Petersilka, in Density Functional Theory II, edited by R.F. Nalewajski, Springer Series Topics in Current Chemistry (Springer, New York, 1996). This is a comprehensive review of the density-functional theory of time-dependent phenomena.Google Scholar
  14. 13.
    A.K. Rajagopal and F. Buot, in Density Functional Theory II, edited by R.F. Nalewajski, Springer Series Topics in Current Chemistry (Springer, New York, 1996). This is a comprehensive report on the functional theory of coupled fields of electrons, ions, and electromagnetic fields. The theory given in the present paper is another application of the techniques presented in this review article.Google Scholar
  15. 14.
    G. Baym, Phys. Rev. 127, 1391 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 15.
    P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • A. K. Rajagopal
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations