Advertisement

Density Functional Calculations for Molecules and Clusters — Lin, LinO, Cn

  • R. O. Jones

Abstract

Applications of density functional (DF) methods to molecules and atomic clusters have expanded greatly in recent years. The reasons for this are not hard to find: DF calculations using the local spin density (LSD) approximation are free of adjustable parameters and can be applied to systems where accurate calculations of the many-electron wave function are not yet possible. Furthermore, the use of modifications of the LSD approximation to the exchange-correlation energy has resulted in significant improvements in the calculated formation energies of numerous small molecules [1]. This has helped overcome the long-standing reservations of many in the chemical community, and the DF method has found favor in many applications to larger molecules and clusters.

Keywords

Electron Spin Resonance Cohesive Energy Trigonal Bipyramid Density Functional Calculation Stable Isomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, A. D. Becke, J. Chem. Phys. 96, 2155 (1992).ADSCrossRefGoogle Scholar
  2. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 97, 7846 (1992).ADSCrossRefGoogle Scholar
  3. 2.
    D. A. Garland and D. M. Lindsay, J. Chem. Phys. 78, 2813 (1983).ADSCrossRefGoogle Scholar
  4. 3.
    P. Dugourd, J. Chevaleyre, M. Broyer, J. P. Wolf, and L. Wöste, Chem. Phys. Letters 175, 555 (1990).ADSCrossRefGoogle Scholar
  5. 4.
    J. A. Howard, H. A. Joly, R. Jones, P. P. Edwards, R. J. Singer, and D. E. Logan, Chem. Phys. Letters 204, 128 (1993).ADSCrossRefGoogle Scholar
  6. 5.
    C.H. Wu, J. Chem. Phys. 65, 3181 (1976) [Li2, Li3]; J. Phys. Chem. 87, 1534 (1983) [Li4]; J. Chem. Phys. 91, 546 (1989) [Li5].ADSCrossRefGoogle Scholar
  7. 6.
    P. Dugourd, D. Rayane, P. Labastie, B. Vezin, J. Chevaleyre, and M. Broyer, Chem. Phys. Lett. 197, 433 (1992).ADSCrossRefGoogle Scholar
  8. 7.
    C. Bréchignac, H. Busch, P. Cahuzac, and J. Leygnier, J. Chem. Phys. 101, 6992 (1994).ADSCrossRefGoogle Scholar
  9. 8.
    I. Boustani, W. Pewestorf, P. Fantucci, V. Bonačić-Koutecký, and J. Kouteckyý, Phys. Rev. B 35, 9437 (1987). [Lin, Li+ n]ADSCrossRefGoogle Scholar
  10. I. Boustani and J. Kouteckć, J. Chem. Phys. 88, 5657 (1988) [Li n].ADSCrossRefGoogle Scholar
  11. 9.
    H. Kudo, C.H. Wu, and H. R. Ihle, J. Nucl. Mater. 78, 380 (1978).ADSCrossRefGoogle Scholar
  12. C. H. Wu, H. Kudo, and H. R. Ihle, J. Chem. Phys. 70, 1815 (1979).ADSCrossRefGoogle Scholar
  13. 10.
    E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3322 (1984).ADSCrossRefGoogle Scholar
  14. 11.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).ADSCrossRefGoogle Scholar
  15. 12.
    G. von Helden, M.-T. Hsu, N. Gotts, and M. T. Bowers, J. Phys. Chem. 97, 8182 (1993).CrossRefGoogle Scholar
  16. 13.
    H. Handschuh, G. Ganteför, B. Kessler, P. S. Bechthold, and W. Eberhardt, Phys. Rev. Lett. 74, 1095 (1995).ADSCrossRefGoogle Scholar
  17. 14.
    G. von Helden, N. G. Gotts, M. T. Bowers, Nature 363, 60 (1993).ADSCrossRefGoogle Scholar
  18. J. Hunter, J. Frye, and M. F. Jarrold, Science 260, 784 (1993).ADSCrossRefGoogle Scholar
  19. 15.
    J. C. Grossman, L. Mitas, and K. Raghavachari, Phys. Rev. Lett. 75, 3870 (1995).ADSCrossRefGoogle Scholar
  20. 16.
    P. R. Taylor, E. Bylaska, J. H. Weare, and R. Kawai, Chem. Phys. Lett. 235, 558 (1995).ADSCrossRefGoogle Scholar
  21. 17.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  22. 18.
    The gradient-corrected functional used the modification to the exchange energy of A. D. Becke, Phys. Rev. A 38, 3098 (1988) and the modified correlation energy functional of J. P. Perdew, Phys. Rev. B 33, 8822 (1986).ADSCrossRefGoogle Scholar
  23. 19.
    R. O. Jones, A. Lichtenstein, and J. Hutter, J. Chem. Phys. 106, 4566 (1997).ADSCrossRefGoogle Scholar
  24. 20.
    R. O. Jones and G. Scifert, Phys. Rev. Lett. 79, 443 (1997).ADSCrossRefGoogle Scholar
  25. 21.
    K. P. Huber and G Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, (Van Nostrand Reinhold, New York, 1979).CrossRefGoogle Scholar
  26. 22.
    R. O. Jones, J. Chem. Phys. 99, 1194 (1993).ADSCrossRefGoogle Scholar
  27. 23.
    R. Kawai, J. F. Tombrello, and J. H. Weare, Phys. Rev. A 49, 4236 (1994).ADSCrossRefGoogle Scholar
  28. 24.
    P. Ballone and R. O. Jones, J. Chem. Phys. 100, 4941 (1994).ADSCrossRefGoogle Scholar
  29. 25.
    D. T. Grow and R. M. Pitzer, J. Chem. Phys. 67, 4019 (1977).ADSCrossRefGoogle Scholar
  30. 26.
    H. Kimura, M. Asano, and K. Kubo, J. Nucl. Mater. 92, 221 (1980).ADSCrossRefGoogle Scholar
  31. 27.
    P. v.R. Schleyer, E.-U. Würthwein, and J. A. Pople, J. Am. Chem. Soc. 104, 5839 (1982).CrossRefGoogle Scholar
  32. 28.
    P. v.R. Schleyer, in New Horizons in Quantum Chemistry, edited by P. O. Löwdin and B. Pullman, (Reidel, Dordrecht, 1983), p. 95.CrossRefGoogle Scholar
  33. 29.
    M. Gutowski and J. Simons, J. Phys. Chem. 98, 8326 (1994).CrossRefGoogle Scholar
  34. 30.
    C. H. Wu, Chem. Phys. Lett. 139, 357 (1987).ADSCrossRefGoogle Scholar
  35. 31.
    R. S. Berry, J. Chem. Phys. 32, 933 (1960).ADSCrossRefGoogle Scholar
  36. 32.
    J. Ivanic, C. J. Marsden, and D. M. Hassett, J. Chem. Soc, Chem. Commun. 1993, 822 (1993).CrossRefGoogle Scholar
  37. 33.
    D. Porezag, T. Frauenheim, T. Köhler, G. Scifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995).ADSCrossRefGoogle Scholar
  38. 34.
    R. Hoffmann, Tetrahedron 22, 521 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. O. Jones
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations