Applications of Self-Interaction Corrections to Localized States in Solids

  • W. M. Temmerman
  • A. Svane
  • Z. Szotek
  • H. Winter

Abstract

The local-spin-density (LSD) approximation to density functional theory provides a simple and rather successful scheme for describing many interacting electrons in a solid [1]. There exist, however, important cases where electron correlations are too strong to be properly treated within LSD. One prominent example is the high-temperature superconductors, for which LSD fails to produce the antiferromagnetic and semiconducting ground states of the generic La2CuO4 and YBa2Cu3O6 compounds [2]. Another example are the 3d transition metal oxides MnO, FeO, CoO and NiO, which are Mott insulators characterized by localized d-electrons [3,4]. These materials have antiferromagnetic order and large energy gaps although the metal d-shell is incompletely filled. The LSD approximation does reveal the magnetic ordering but with somewhat too small magnetic moments and vanishing (for FeO and CoO) or very small (for MnO and NiO) gaps [5]. In addition, the persistence of the magnetic moments above the Néel temperature is difficult to explain in the Slater picture of magnetism inherent in the LSD band picture. The failure of LSD in producing the correct gaps may be traced to the fact that the LSD eigenenergies do not have built in the large on-site Coulomb repulsion, which characterizes the separation between occupied and unoccupied states [4,6,7]. A third example of inadequacy of the LSD is in describing tri-valent cerium compounds, which are characterized by each Ce atom having a localized f-electron. Cerium is the first element of the Periodic Table to accomodate an f-electron.

Keywords

Transition Pressure Spin Magnetic Moment Bloch State Volume Collapse Discontinuous Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    W. Pickett, Rev. Mod. Phys. 61, 433 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).Google Scholar
  4. 4.
    B. Brandow, Adv. Phys. 26, 651 (1977)ADSCrossRefGoogle Scholar
  5. J. Alloys and Compounds, 181, 377 (1992).Google Scholar
  6. 5.
    K. Terakura, A. R. Williams, T. Oguchi and J. Kübier, Phys. Rev. Lett. 52, 1830 (1984); Phys. Rev. B30, 4734 (1984).ADSCrossRefGoogle Scholar
  7. 6.
    J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).ADSCrossRefGoogle Scholar
  8. 7.
    V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B 44, 943 (1991).ADSCrossRefGoogle Scholar
  9. 8.
    B. Johansson, Phil. Mag. 30, 469 (1974).ADSCrossRefGoogle Scholar
  10. 9.
    J. W. Allen and R. M. Martin, Phys. Rev. Lett. 49, 1106 (1982).ADSCrossRefGoogle Scholar
  11. J.
    W. Allen and L. Z. Liu, Phys. Rev. B 46, 5047 (1992).ADSCrossRefGoogle Scholar
  12. 10.
    D. Glötzel, J. Phys. F 8, L163 (1978).CrossRefGoogle Scholar
  13. D. Glötzel and R. Podloucky, Physica 102B, 348 (1980).Google Scholar
  14. 11.
    H. L. Skriver, O. K. Andersen and B. Johansson, Phys. Rev. Lett. 44, 1230 (1980).ADSCrossRefGoogle Scholar
  15. 12.
    J. Hubbard, Proc. R. Soc. London A276, 238 (1963); A277, 237 (1964); A281 401 (1964).ADSGoogle Scholar
  16. 13.
    V. I. Anisimov, F. Aryasetiawan and A. I. Liechtenstein, J. Phys.: Condens. Matter. 9, 767 (1997).ADSCrossRefGoogle Scholar
  17. 14.
    J. Taylor, Scattering Theory (Wiley, New York, 1972).Google Scholar
  18. 15.
    R. D. Cowan, Phys. Rev. 163, B54 (1967).ADSCrossRefGoogle Scholar
  19. I. Lindgren, Int. J. Quant. Chem. 5, 411 (1971).CrossRefGoogle Scholar
  20. G. W. Bryant and G. D. Mahan, Phys. Rev. B 17, 1744 (1978).ADSCrossRefGoogle Scholar
  21. J. P. Perdew, Chem. Phys. Lett. 64, 127 (1979). Phys. Rev. B 41 7311 (1990).ADSCrossRefGoogle Scholar
  22. 16.
    A. Zunger, J. P. Perdew and G. L. Oliver, Solid State Commun. 34, 933 (1980).ADSCrossRefGoogle Scholar
  23. 17.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).ADSCrossRefGoogle Scholar
  24. 18.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  25. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  26. 19.
    S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSCrossRefGoogle Scholar
  27. 20.
    A. Svane, Phys. Rev. B 51, 7924 (1995).ADSCrossRefGoogle Scholar
  28. 21.
    M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).ADSCrossRefGoogle Scholar
  29. 22.
    T. Kotani, Phys. Rev. B 50, 14816 (1994).ADSCrossRefGoogle Scholar
  30. T. Kotani, Phys. Rev. Lett. 74, 2989 (1995).ADSCrossRefGoogle Scholar
  31. 23.
    J. G. Harrison, J. Chem. Phys. 78, 4562 (1983); ibid., 79, 2265 (1983).ADSCrossRefGoogle Scholar
  32. M. R. Pederson and C. C. Lin, J. Chem. Phys. 88, 1807 (1988).ADSCrossRefGoogle Scholar
  33. S. D. Manoli and M. A. Whitehead, Phys. Rev. A 38, 3187 (1988).ADSCrossRefGoogle Scholar
  34. M. M. Rieger and P. Vogl, Phys. Rev. B52, 16567 (1995).ADSGoogle Scholar
  35. 24.
    J. G. Harrison, R. A. Heaton and C. C. Lin, J. Phys. B 16, 2079 (1983).ADSCrossRefGoogle Scholar
  36. 25.
    M. R. Pederson, R. A. Heaton and C. C. Lin, J. Chem. Phys., 80, 1972 (1984); ibid., 82, 2688 (1985).ADSCrossRefGoogle Scholar
  37. 26.
    Y. Guo and M. A. Whitehead, J. Mol. Struct. (Theochem), 228, 285 (1991);ibid., 231, 307 (1991).CrossRefGoogle Scholar
  38. 27.
    Y. Ishii, S. Ohnishi and S. Sugano, Phys. Rev. B 33, 5271 (1986).ADSCrossRefGoogle Scholar
  39. 28.
    E. S. Fois, J. I. Penman and P. A. Madden, J. Chem. Phys. 98, 6352 (1993).ADSCrossRefGoogle Scholar
  40. 29.
    J. M. Pacheco and W. Ekardt, Z. Phys. D 24, 65 (1992).ADSCrossRefGoogle Scholar
  41. 30.
    H. Katayama Yoshida and A. Zunger, Phys. Rev. Lett. 53, 1256 (1984); Phys. Rev. B 31, 7877 (1985).; ibid., 8317 (1985).ADSCrossRefGoogle Scholar
  42. 31.
    R. A. Heaton, J. G. Harrison and C. C. Lin, Phys. Rev. B 31, 1077 (1985).ADSCrossRefGoogle Scholar
  43. M. R. Pederson and B. M. Klein, Phys. Rev. B 37, 10319 (1988).ADSCrossRefGoogle Scholar
  44. K. A. Jackson and C. C. Lin, Phys. Rev. B 38, 12171 (1988); ibid., 41, 947 (1990).ADSCrossRefGoogle Scholar
  45. S. C. Erwin and C. C. Lin, Phys. Rev. B 40, 1892 (1989).ADSCrossRefGoogle Scholar
  46. 32.
    M. J. Puska and R. Nieminen, Phys. Rev. B 43, 12221 (1991).ADSCrossRefGoogle Scholar
  47. 33.
    R. A. Heaton, J. G. Harrison and C. C. Lin, Phys. Rev. B 28, 5992 (1983).ADSCrossRefGoogle Scholar
  48. R. A. Heaton and C. C. Lin, J. Phys. C 17, 1853 (1984).ADSCrossRefGoogle Scholar
  49. M. R. Pederson and C. C. Lin, Phys. Rev. B 35, 2273 (1987).ADSCrossRefGoogle Scholar
  50. S. C. Erwin and C. C. Lin, J. Phys. C 21, 4285 (1988).ADSCrossRefGoogle Scholar
  51. F. Gan, Y.-N. Xu, M.-Z. Huang, W. Y. Ching and J. G. Harrison, Phys. Rev. B 45, 8248 (1992).ADSCrossRefGoogle Scholar
  52. 34.
    N. Hamada and S. Ohnishi, Phys. Rev. B 34, 9042 (1986).ADSCrossRefGoogle Scholar
  53. Y. Hatsugai and T. Fujiwara, Phys. Rev. B 37, 1280 (1988).ADSCrossRefGoogle Scholar
  54. 35.
    A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).ADSCrossRefGoogle Scholar
  55. 36.
    Z. Szotek, W. M. Temmerman and H. Winter, Phys. Rev. B 47, 4029 (1993).ADSCrossRefGoogle Scholar
  56. 37.
    M. Arai and T. Fujiwara, Phys. Rev. B 51, 1477 (1995).ADSCrossRefGoogle Scholar
  57. 38.
    A. Svane, Phys. Rev. Lett. 68, 1900 (1992).ADSCrossRefGoogle Scholar
  58. 39.
    W. M. Temmerman, Z. Szotek and H. Winter, Phys. Rev. B47, 11533 (1993).ADSGoogle Scholar
  59. 40.
    I. V. Solov’ev, A. I. Liechtenstein and V. A. Gubanov, Sov. Phys. Solid State, 33, 572 (1991).Google Scholar
  60. 41.
    W. M. Temmerman, Z. Szotek and H. Winter, Phys. Rev. B 47, 1184 (1993).ADSCrossRefGoogle Scholar
  61. 42.
    Z. Szotek, W. M. Temmerman and H. Winter, Phys. Rev. Lett. 72, 1244 (1994).ADSCrossRefGoogle Scholar
  62. 43.
    A. Svane, Phys. Rev. Lett. 72, 1248 (1994).ADSCrossRefGoogle Scholar
  63. 44.
    A. Svane, Phys. Rev. B53, 4275 (1996).ADSGoogle Scholar
  64. 45.
    A. Svane, W. M. Temmerman, Z. Szotek, H. Winter, Solid State Commun. 102, 473 (1997).ADSCrossRefGoogle Scholar
  65. 46.
    A. Svane, J. Trygg, B. Johansson and O. Eriksson, Phys. Rev. B56, 7143 (1997).ADSGoogle Scholar
  66. 47.
    A. Svane and O. Gunnarsson, Solid State Commun. 76, 851 (1990).ADSCrossRefGoogle Scholar
  67. 48.
    A. R. Williams and J. Soler, Bull. Amer. Phys. Soc. 32, 562 (1987).Google Scholar
  68. 49.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).ADSCrossRefGoogle Scholar
  69. 50.
    H. L. Skriver, The LMTO Method (Springer Verlag, Berlin, 1984).CrossRefGoogle Scholar
  70. 51.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  71. 52.
    O. K. Andersen, O. Jepsen and O. Glötzel, Canonical description of the band structures of metals, in Proceedings of the International School of Physics, Course LXXXIX, Varenna, 1985 edited by F. Bassani, F. Fumi and M. P. Tosi (North-Holland, Amsterdam, 1985), p. 59.Google Scholar
  72. 53.
    O. K. Andersen, Z. Pawlowska and O. Jepsen, Phys. Rev. B 34, 5253 (1986).ADSCrossRefGoogle Scholar
  73. 54.
    R.E. Cohen, W.E. Pickett, and H. Krakauer, Phys. Rev. Lett. 62, 831 (1990).ADSCrossRefGoogle Scholar
  74. C. O. Rodriguez, A. I. Lichtenstein, I.I. Mazin, O. Jepsen, O. K. Andersen, and M. Methfessel, Phys. Rev. B 42, 2692 (1990).ADSCrossRefGoogle Scholar
  75. 55.
    I. N. Iskenderov, I. A. Drabkin, L. T. Emelyanova, and Ya. M. Ksendzov, Fiz. Tverd. Tela (Leningrad) 10, 2573 (1968) [Sov. Phys. Solid State 10, 2031 (1969).].Google Scholar
  76. 56.
    B. E. F. Fender, A. J. Jacobson, and F. A. Wegwood, J. Chem. Phys. 48, 990 (1968).ADSCrossRefGoogle Scholar
  77. 57.
    A. K. Cheetham and D. A. O. Hope, Phys. Rev. B 27, 6964 (1983).ADSCrossRefGoogle Scholar
  78. 58.
    W. L. Roth, Phys. Rev. 110, 1333 (1958).ADSCrossRefGoogle Scholar
  79. 59.
    J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G. A. Sawatzky, F.M.F. de Groot and T.S. Turner, Phys. Rev. B44, 6090 (1991).ADSGoogle Scholar
  80. 60.
    D. C. Khan and R. A. Erickson, Phys. Rev. B 1, 2243 (1970).ADSCrossRefGoogle Scholar
  81. 61.
    D. Herrmann-Ronzaud, P. Burlet, and J. Rossat-Mignod, J. Phys. C 11, 2123 (1978).ADSCrossRefGoogle Scholar
  82. 62.
    A. Fujimori, F. Minami, and S. Sugano, Phys. Rev. B 29, 5225 (1984).ADSCrossRefGoogle Scholar
  83. A. Fujimori and F. Minami, Phys. Rev. B 30,957 (1984).ADSCrossRefGoogle Scholar
  84. 63.
    S. Hüfner, J. Osterwalder, T. Riesterer, and F. Hulliger, Solid State Commun. 52, 793 (1984).CrossRefGoogle Scholar
  85. 64.
    H. A. Alperin, J. Phys. Soc. Jpn. Suppl.B 17, 12 (1962).Google Scholar
  86. 65.
    F. P. Koffyberg and F. A. Benko, J. Appl. Phys. 53, 1173 (1982).ADSCrossRefGoogle Scholar
  87. 66.
    J. B. Forsyth, P. J. Brown, and B. M. Wanklyn, J.Phys. C 21, 2917 (1988).ADSCrossRefGoogle Scholar
  88. 67.
    J. M. Ginder, R. M. Roe, Y. Song, R. P. McCall, J. R. Gaines, E. Ehrenfreund, and A. J. Epstein, Phys. Rev. B 37, 7506 (1988).ADSCrossRefGoogle Scholar
  89. 68.
    D. Vaknin, S. K. Sinha, D. E. Moneton, D. C. Johnson, J. Newsam, C. R. Safinya, and H. E. King, Phys. Rev. Lett. 58, 2802 (1987).ADSCrossRefGoogle Scholar
  90. 69.
    G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).ADSCrossRefGoogle Scholar
  91. 70.
    D. C. Koskenmaki and K. A. Gschneidner, in Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. Gschneidner and L. Eyring (North-Holland, Amsterdam, 1978), Vol. 1, Chapter 4.Google Scholar
  92. 71.
    B. Coqblin and A. Blandin, Advan. Phys. 17, 281 (1968).ADSCrossRefGoogle Scholar
  93. R. Ramirez and L. M. Falicov, Phys. Rev. B 3, 1225 (1971).CrossRefGoogle Scholar
  94. 72.
    B. Johansson, Phil. Mag. 30, 469 (1974).ADSCrossRefGoogle Scholar
  95. 73.
    D. R. Gustafsson, J. D. McNutt, and R. O. Roelling, Phys. Rev. 183, 435 (1969).ADSCrossRefGoogle Scholar
  96. 74.
    E. Willoud, H. R. Moser, W.-D. Schneider, and Y. Baer, Phys. Rev. B 28, 7354 (1983).ADSCrossRefGoogle Scholar
  97. 75.
    D. Glötzel, J. Phys. F 8, L163 (1978).CrossRefGoogle Scholar
  98. D. Glötzel and R. Podloucky, Physica 102B, 348 (1980).Google Scholar
  99. 76.
    W. E. Pickett, A. J. Freeman, and D. D. Koelling, Physica 102B, 341 (1980).Google Scholar
  100. W. E. Pickett, A. J. Freeman, and D. D. Koelling, Phys. Rev. B 23, 1266 (1981).ADSCrossRefGoogle Scholar
  101. 77.
    O. Eriksson, M. S. S. Brooks, B. Johansson, Phys. Rev. B 41, 7311 (1990).ADSCrossRefGoogle Scholar
  102. 78.
    B. I. Min, H. J. F. Jansen, T. Oguchi, and A. J. Freeman, Phys. Rev. B 34, 369 (1986).ADSCrossRefGoogle Scholar
  103. 79.
    J. M. Wills, O. Eriksson, and A. M. Boring, Phys. Rev. Lett. 67, 2215 (1991).ADSCrossRefGoogle Scholar
  104. O. Eriksson, J. M. Wills, and A. M. Boring, Phys. Rev. B 46, 12981 (1992).ADSCrossRefGoogle Scholar
  105. 80.
    A. Jayaraman, W. Lowe, L. D. Longinotti and E. Bucher, Phys. Rev. Lett. 36, 366 (1976).ADSCrossRefGoogle Scholar
  106. 81.
    Y. Baer, R. Hauger, Ch. Zürcher, M. Campagna and G. K. Wertheim, Phys. Rev. B. 18, 4433 (1978).ADSCrossRefGoogle Scholar
  107. 82.
    A. Franciosi, J. H. Weaver, N. Mïrtensson and M. Croft, Phys. Rev. B. 24, 3651 (1981).ADSCrossRefGoogle Scholar
  108. 83.
    W. Gudat, R. Rosei, J. H. Weaver, E. Kaldis and F. Hulliger, Solid State Commun. 41, 37 (1982).ADSCrossRefGoogle Scholar
  109. 84.
    I. Vedel, A. M. Redon, J. Rossat-Mignod, O. Vogt and J. M. Leger, J. Phys. C 20, 3439, (1987).ADSCrossRefGoogle Scholar
  110. 85.
    N. Mori, Y. Okayama, H. Takahashi, Y. Haga and T. Suzuki, Physica B 186-188, 444 (1993).ADSCrossRefGoogle Scholar
  111. 86.
    A. Werner, H. D. Hochheimer, R. L. Meng and E. Bucher, Physics Lett. 97A, 207, (1983).ADSCrossRefGoogle Scholar
  112. 87.
    J. M. Leger, I. Vedel, A. M. Redon and J. Rossat-Mignod, J. Magn. Magn. Mater. 63& 64, 49, (1987).ADSCrossRefGoogle Scholar
  113. 88.
    J. M. Leger, D. Ravot and J. Rossat-Mignod, J. Phys. C 17, 4935, (1984).ADSCrossRefGoogle Scholar
  114. 89.
    J. M. Leger, K. Oki, J. Rossat-Mignod and O. Vogt, J. de Physique 46, 889, (1985).CrossRefGoogle Scholar
  115. 90.
    Y. Okayama, Y. Ohara, S. Mituda, H. Takahashi, H. Yoshizawa, T. Osakabe, M. Kohgi, Y. Haga, T. Suzuki and N. Mori, Physica B 186-188, 531 (1993).ADSCrossRefGoogle Scholar
  116. 91.
    F. Hulliger, M. Landolt, H. R. Ott and R. Schmelczer, J. Low Temp. Phys. 20, 269 (1975).ADSCrossRefGoogle Scholar
  117. 92.
    T. Suzuki, Physica B 186-188, 347 (1993).ADSCrossRefGoogle Scholar
  118. 93.
    M. Methfessel, Phys. Rev. B 38, 1537 (1988).ADSCrossRefGoogle Scholar
  119. M. Methfessel, C. O. Rodriguez, and O. K. Andersen, Phys. Rev. B 40, 2009 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • W. M. Temmerman
    • 1
  • A. Svane
    • 2
  • Z. Szotek
    • 1
  • H. Winter
    • 3
  1. 1.Daresbury LaboratoryWarringtonUK
  2. 2.Institute of Physics and AstronomyUniversity of AarhusAarhus CDenmark
  3. 3.Forschungszentrum KarlsruheINFPKarlsruheGermany

Personalised recommendations