Ensemble Density Functional Theory for Inhomogeneous Fractional Quantum Hall Systems

  • O. Heinonen
  • M. I. Lubin
  • M. D. Johnson

Abstract

The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas (2DEG) in a strong magnetic field oriented perpendicular to the plane of the electrons [1]. The effect was discovered as a transport anomaly. In a transport measurement it is noted that at certain strengths B*(n), which depend on the density n of the 2DEG, current can flow without any dissipation. That is, there is no voltage drop along the flow of the current. At the same time, the Hall voltage perpendicular to both the direction of the current and of the magnetic field is observed to attain a quantized value for a small, but finite, range of magnetic field or density, depending on which quantity is varied in the experiment. The effect is understood to be the result of an excitation gap in the spectrum of an infinite 2DEG at these magnetic fields. A convenient measure of the density of a 2DEG in a strong magnetic field is given by the filling factor v = 2πℓ2 B n, with \({\ell _B}{\mkern 1mu} = {\mkern 1mu} \sqrt {\hbar c/(eB)} \) the magnetic length. The filling factor gives the ratio of the number of particles to the number of available states in a magnetc sub-band (Landau level), or, equivalently, the number of particles per flux quantum Φ0 = hc/e. The quantum Hall effect was first discovered [2] at integer filling factors. In this integer quantum Hall effect, the energy gap is nothing but the kinetic energy gap ħω c = ħeB/(m*c). Later, the fractional quantum Hall effect (FQHE) was discovered [3] at certain rational filling factors of the form v = p/q, with p and q relative primes, and q odd. In the FQHE, the excitation gap is a consequence of the strong electron-electron correlations. Therefore, any computational approach to the quantum Hall effect must accurately treat the electron correlations in order to capture the FQHE at all

Keywords

Filling Factor Local Density Approximation Quantum Hall Effect Slater Determinant Lower Landau Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Quantum Hall effect, edited by R.E. Prange and S.M. Girvin (Springer, New York 1987).Google Scholar
  2. 2.
    K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    D.C. Tsui, H.L. Störnier, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    B.I. Halperin, Phys. Rev. B 25, 2185 (1982).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    See, for example, A.H. MacDonald, in Quantum Transport in Semiconductor Microstructures, edited by B. Kramer (Kluwer Academic, 1996).Google Scholar
  8. 8.
    P.L. McEuen, E.B. Foxman, Jari Kinaret, U. Meirav, M.A. Kastner, Ned S. Wingreen, and S.J. Wind, Phys. Rev. B45, 11 419 (1992).Google Scholar
  9. 9.
    O. Klein, C.C. de Chamon, D. Tang, D.M. Abusch-Magder, U. Meirav, X.-G. Wen, M.A. Kastner, and S.J. Wind, Phys. Rev. Lett. 74, 785 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    N.B. Zhitenev, M. Brodsky, R.C. Ashoori, M.R. Melloch, SISSA report cond-mat/9601157.Google Scholar
  11. 11.
    N.B. Zhitenev, R.J. Haug, K. von Klitzing, and K. Eberl, Phys. Rev. Lett. 71, 2292 (1993).ADSCrossRefGoogle Scholar
  12. G. Ernst, N.B. Zhitenev, R.J. Haug, K. von Klitzing, and K. Eberl, Surf. Sci. 361/362, 102 (1996).ADSCrossRefGoogle Scholar
  13. 12.
    J.M. Shilton et al, J. Phys. Condens. Mat. 8, L337 (1996).ADSCrossRefGoogle Scholar
  14. A. Knäbchen and Y.B. Levinson, SISSA report cond-mat/9608074.Google Scholar
  15. 13.
    S.L. Sondhi, A. Karlhede, S.A. Kivelson and E.H. Rezayi, Phys. Rev. B 47, 16 419 (1993).CrossRefGoogle Scholar
  16. 14.
    S.E. Barrett, D. Dabbagh, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 74, 5112 (1995).ADSCrossRefGoogle Scholar
  17. 15.
    A. Karlhede, S.A. Kivelson, K. Lejnell and S.I. Sondhi, Phys. Rev. Lett. 77, 2061 (1996).ADSCrossRefGoogle Scholar
  18. 16.
    X.-G. Wen, Phys. Rev. B 44, 5708 (1991).ADSCrossRefGoogle Scholar
  19. 17.
    J.K. Jain and T. Kawamura, Europhys. Lett. 29, 321 (1995).ADSCrossRefGoogle Scholar
  20. 18.
    L. Brey, Phys. Rev. B 50, 11 861 (1994).CrossRefGoogle Scholar
  21. 19.
    D. B. Chklovskii, Phys. Rev. B 51, 9895 (1995).ADSCrossRefGoogle Scholar
  22. 20.
    E. Goldman and S. R. Renn, unpublished.Google Scholar
  23. 21.
    A.H. MacDonald, S.R.E. Yang and M.D. Johnson. Aust. J. Phys. 46, 345 (1993).ADSCrossRefGoogle Scholar
  24. 22.
    C.C. De Chamon and X.G. Wen, Phys. Rev. B49, 8227 (1994).ADSGoogle Scholar
  25. 23.
    C.W.J. Beenakker, Phys. Rev. Lett. 64, 216 (1990).ADSCrossRefGoogle Scholar
  26. 24.
    D.B. Chklovskii, B.I. Shklovskii, and L.I. Glazman, Phys. Rev. B46, 4026 (1992).ADSGoogle Scholar
  27. 25.
    See, for example, S.-R. Eric Yang, A.H. MacDonald, and M.D. Johnson, Phys. Rev. Lett. 71, 3194 (1993).ADSCrossRefGoogle Scholar
  28. 26.
    W. Kohn and P. Vashista in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. March (Plenum, New York, 1983).Google Scholar
  29. 27.
    Density Functional Theory: an Approach to the Quantum Many-Body Problem, by R.M. Dreizler and E.K.U Gross (Springer, Berlin 1990).MATHGoogle Scholar
  30. 28.
    Density-Functional Theory of Atoms and Molecules, by R.G. Parr and W. Yang (Oxford University Press, New York, 1989).Google Scholar
  31. 29.
    M. Ferconi and G. Vignale, Phys. Rev. B 50, 14 722 (1994).CrossRefGoogle Scholar
  32. 30.
    G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987); Phys. Rev. B 37, 10 685 (1988).ADSCrossRefGoogle Scholar
  33. 31.
    M. Ferconi, M. Geller and G. Vignale, Phys. Rev. B 52, 16 357 (1995).CrossRefGoogle Scholar
  34. 32.
    O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75, 4110 (1995).ADSCrossRefGoogle Scholar
  35. 33.
    O. Heinonen, M.I. Lubin and M.D. Johnson, Int. J. Quant. Chem.: Quant. Chem. Symposium 30, 231 (1996).Google Scholar
  36. 34.
    E.K.U Gross, L.N. de Oliveira and W. Kohn, Phys. Rev. A 37, 2805 (1988); Phys. Rev. A 37, 2809 (1988).MathSciNetADSCrossRefGoogle Scholar
  37. 35.
    W. Pickett, Rev. Mod. Phys. 61, 433 (1989).ADSCrossRefGoogle Scholar
  38. 36.
    A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).ADSCrossRefGoogle Scholar
  39. Z. Szotek, W. Temmerman and H. Winter, Phys. Rev. B 47, 4029 (1993).ADSCrossRefGoogle Scholar
  40. 37.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  41. 38.
    M.I. Lubin, O. Heinonen, and M.D. Johnson, Phys. Rev. B 56, 10373 (1997).ADSCrossRefGoogle Scholar
  42. 39.
    D. Levesque, J.J. Weiss and A.H. MacDonald, Phys. Rev. B 30, 1056 (1984).ADSCrossRefGoogle Scholar
  43. 40.
    R. Morf and B.I. Halperin, Phys. Rev. B 33, 221 (1986).CrossRefGoogle Scholar
  44. 41.
    N. d’Ambrumenil and R. Morf, Phys. Rev. B 40, 6108 (1989).ADSCrossRefGoogle Scholar
  45. 42.
    B.Y. Gelfand and B.I. Halperin, Phys. Rev. B 49, 1994.Google Scholar
  46. 43.
    U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).ADSCrossRefGoogle Scholar
  47. 44.
    For a comprehensive reference, see The Quantum Hall Effects, by T. Chakraborty and P. Pietiläinen (Springer Verlag, Berlin 1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • O. Heinonen
    • 1
  • M. I. Lubin
    • 1
  • M. D. Johnson
    • 1
  1. 1.Department of PhysicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations