Bound-Free Correlation Potentials for Scattering Theory

  • Robert K. Nesbet


Density functional theory [1,2] (DFT) models a system of N interacting electrons by an effective one-electron Hamiltonian with a local exchange-correlation potential function. There is no competitive method available for realistic calculations on condensed matter, large molecules, or molecules containing heavy atoms. For atoms or small molecules, DFT is much more efficient than alternative methods, and often gives results of useful accuracy [3]. Many applications of this theory to bound states have used the local-density approximation (LDA), based on the interacting homogeneous electron gas, which does not provide an adequate model of an electron outside the charge distribution responsible for the interaction energy. LDA is not expected to be a correct model for the nonlocal polarization response involved in bound-free correlation and the van der Waals interaction [3].


Density Functional Theory Polarization Potential Induce Polarization Polarization Response Test Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Andersson, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    J. F. Dobson and B. P. Dinte, Phys. Rev. Lett. 76, 1780 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    R. K. Nesbet, Variational Methods in Electron-Atom Scattering Theory (Plenum, New York, 1980).CrossRefGoogle Scholar
  8. 8.
    R. K. Nesbet, J. Phys. B 29, L173 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47, 446 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    P. W. Langhoff, Chem. Phys. Lett. 22, 60 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    R. K. Nesbet, Phys. Rev. A 14, 1065 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    C. Mavroyannis and M. J. Stephen, Mol. Phys. 5, 629 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    A. Dalgarno and W. D. Davison, Adv. At. Mol. Phys. 2, 1 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, edited by A. Jeffrey (Academic Press, New York, 1980). Eq. 3.264(2), p300.Google Scholar
  15. 15.
    J. D. Jackson, Classical Electrodynamics, 2nd edition (Wiley, New York, 1975). Chapter 4, pp136–167.zbMATHGoogle Scholar
  16. 16.
    R. J. Bell and A. E. Kingston, Proc. Phys. Soc.(London) 88, 901 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Robert K. Nesbet
    • 1
  1. 1.IBM Almaden Research CenterSan JoseUSA

Personalised recommendations