Electronic Density Functional Theory pp 261-284 | Cite as
Van der Waals Functionals via Local Approximations for Susceptibilities
Chapter
Abstract
The van der Waals * (vdW) or Dispersion interaction between distant sections of a molecular or condensed matter system is a component of the correlation energy. The part of the correlation energy clearly distinguishable as vdW energy is usually much smaller than, say, a covalent bonding energy. Nevertheless the vdW energy and other weak interactions are of great potential importance in biological and pharmaceutical applications, in physisorption studies and in the description of novel chemical species such as complexes containing rare-gas atoms.
Keywords
Local Approximation Correlation Energy Dipole Polarizability Charge Conservation Inhomogeneous System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.E. Zaremba and W. Kohn, Phys. Rev. B 13, 2270 (1976).ADSCrossRefGoogle Scholar
- 2.R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd ed. (Academic Press, London, 1989).Google Scholar
- 3.G. Barton, Rep. Prog. Phys. 42, 964 (1979).ADSCrossRefGoogle Scholar
- 4.J. Mahanty and B. W. Ninham, Dispersion Forces (Academic Press, London, 1976).Google Scholar
- 5.K. L. C. Hunt, J. Chem. Phys 80, 393 (1984).ADSCrossRefGoogle Scholar
- 6.J. F. Dobson and B. P. Dinte, Phys. Rev. Lett. 76, 1780 (1996).ADSCrossRefGoogle Scholar
- 7.Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).ADSCrossRefGoogle Scholar
- 8.K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032 (1991).ADSCrossRefGoogle Scholar
- 9.E. Hult, Y. Andersson, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. Lett. 77, 2029 (1996).ADSCrossRefGoogle Scholar
- 10.J. F. Dobson, in Topics in Condensed Matter Physics, edited by M. P. Das (Nova, New York, 1994), p. 121.Google Scholar
- 11.J. F. Dobson, unpublished.Google Scholar
- 12.J. Harris and A. Griffin, Phys. Rev. B 11, 3669 (1975).ADSCrossRefGoogle Scholar
- 13.D. C. Langreth and J. P. Perdew, Sol. State Commun. 17, 1425 (1975).ADSCrossRefGoogle Scholar
- 14.O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
- 15.J. P. Perdew, Physica B 172, 1 (1991).ADSCrossRefGoogle Scholar
- 16.E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 887 (1984).CrossRefGoogle Scholar
- 17.E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).ADSCrossRefGoogle Scholar
- 18.E. K. U. Gross, J. F. Dobson, and M. Petersilka, in Density Functional Theory II, Vol. 181 of Topics in Current Chemistry, edited by R. F. Nalewajski (Springer, Berlin, 1996), Chap. 2, pp. 81–172.Google Scholar
- 19.W. Kohn and W. Hanke, private communication.Google Scholar
- 20.J. Lindhard, Kgl. Danske Vidensk. Mat-Fys. Meddr. 28, (1954).Google Scholar
- 21.J. F. Dobson, NATO ASI Series B, Physics 337, 393 (1995).CrossRefGoogle Scholar
- 22.J. F. Dobson and G. H. Harris, J. Phys. C: Solid State Phys. 21, 6127 (1987).ADSCrossRefGoogle Scholar
- 23.J. C. Inkson, Many-body Theory of Solids (Plenum, New York, 1984).CrossRefGoogle Scholar
- 24.T. Ando, Z. Phys. B 26, 263 (1977).ADSCrossRefGoogle Scholar
- 25.A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).ADSCrossRefGoogle Scholar
- 26.N. Iwamoto and E. K. U. Gross, Phys. Rev. B 35, 3003 (1987).ADSCrossRefGoogle Scholar
- 27.G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).ADSCrossRefGoogle Scholar
- 28.B. Dabrowski, Phys. Rev. B 34, 4989 (1986).ADSCrossRefGoogle Scholar
- 29.D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
- 30.J. F. Dobson and G. H. Harris, unpublished.Google Scholar
- 31.W. Kohn and Y. Meir, (Preprint, CECAM meeting September 1996).Google Scholar
- 32.W. Kohn and W. Hanke, unpublished.Google Scholar
- 33.J. F. Dobson and A. Savin, unpublished.Google Scholar
Copyright information
© Springer Science+Business Media New York 1998