Advertisement

Time-Dependent Optimized Effective Potential in the Linear Response Regime

  • M. Petersilka
  • U. J. Gossmann
  • E. K. U. Gross

Abstract

Time-dependent density functional theory of spin-polarized systems is based on the fact [1,2] that the exact time-dependent spin densities \({n_\sigma }(rt){\mkern 1mu} = {\mkern 1mu} \left\langle {\Psi (t){\mkern 1mu} {{\left| {\hat n} \right.}_\sigma }(r)\left| {\Psi (t)} \right.} \right\rangle \) of an interacting many-particle system subject to time-dependent potentials v ext σ (r t) can be calculated from the orbitals of an auxiliary noninteracting system, i. e.
$${n_\sigma }(rt) = \sum\limits_j^{{N_\sigma }} {|{\varphi _{j\sigma }}(rt){|^2}} .$$
(1)

Keywords

Excitation Energy Spin Orbital Schrodinger Equation Functional Derivative Quantum Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    K.L. Liu and S.H. Vosko, Can. J. Phys. 67, 1015 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    E.K.U. Gross, J.F. Dobson, and M. Petersilka, in Density Funcional Theory II, Vol. 181 of Topics in Current Chemistry, edited by R.F. Nalewajski (Springer, Berlin, 1996), p. 81.Google Scholar
  4. 4.
    C.A. Ullrich, U.J. Gossmann, and E.K.U. Gross, Phys. Rev. Lett. 74, 872 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    R.T. Sharp and G.K. Horton, Phys. Rev. 90, 317 (1953).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J.D. Talman and W.F. Shadwick, Phys. Rev. A 14, 36 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A 45, 101 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A 46, 5453 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Krieger, Y. Li, and G.J. Iafrate, in Density Functional Theory, Vol. 337 of NATO ASI Series B, edited by E.K.U. Gross and R.M. Dreizler (Plenum Press, New York, 1995), p. 191, and references therein.Google Scholar
  10. 10.
    T. Grabo and E.K.U. Gross, Chem. Phys. Lett. 240, 141 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    J. Chen, J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A 54, 3939 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    E.K.U. Gross, C.A. Ullrich, and U.J. Gossmann, in Density Functional Theory, Vol. 337 of NATO ASI Series B, edited by E.K.U. Gross and R.M. Dreizler (Plenum Press, New York, 1995), p. 149.Google Scholar
  13. 13.
    C.A. Ullrich, U.J. Gossmann, and E.K.U. Gross, Ber. Bunsenges. Phys. Chem. 99, 488 (1995).Google Scholar
  14. 14.
    C.A. Ullrich, S. Erhard, and E.K.U. Gross, in Super Intense Laser Atom Physics IV, edited by H.G. Muller and M.V. Fedorov (Kluwer, Dordrecht, 1996), p. 267.CrossRefGoogle Scholar
  15. 15.
    C.A. Ullrich and E.K.U. Gross, Comments on Atomic and Molecular Physics (1997), in press.Google Scholar
  16. 16.
    C.A. Ullrich, P.G. Reinhard, and E. Suraud, J. Phys. B: At. Mol. Opt. Phys. (1997), to appear.Google Scholar
  17. 17.
    J.C. Slater, Phys. Rev. 81, 385 (1951).ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    T. Ziegler, A. Rauk, and E.J. Baerends, Theoret. Chim. Acta 43, 261 (1977).CrossRefGoogle Scholar
  20. 20.
    U. von Barth, Phys. Rev. A 20, 1693 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    A. Theophilou, J. Phys. C 12, 5419 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    N. Hadjisavvas and A. Theophilou, Phys. Rev. A 32, 720 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    W. Kohn, Phys. Rev. A 34, 5419 (1986).CrossRefGoogle Scholar
  24. 24.
    E.K.U. Gross, L.N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    E.K.U. Gross, L.N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    L.N. Oliveira, E.K.U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    A. Nagy, Phys. Rev. A 42, 4388 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    A. Nagy, J. Phys. B 24, 4691 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    A. Nagy, Phys. Rev. A 49, 3074 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    A. Nagy, Int. J. Quantum Chem. Symp. 29, 297 (1995).CrossRefGoogle Scholar
  31. 31.
    M. Levy, Phys. Rev. A 52, R4313 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    P.K. Chattaraj, S.K. Ghosh, S. Liu, and R.G. Parr, Int. J. Quant. Chem, in press.Google Scholar
  33. 33.
    A. Görling, Phys. Rev. A 54, 3912 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    M. Petersilka, U.J. Gossmann, and E.K.U Gross, Phys. Rev. Lett. 76, 1212 (1996).ADSCrossRefGoogle Scholar
  35. 35.
    M. Petersilka and E.K.U. Gross, Int. J. Quantum Chem. Symp. 30, 1393 (1996).CrossRefGoogle Scholar
  36. 36.
    Ch. Jamorski, M.E. Casida, and D.R. Salahub, J. Chem. Phys. 104, 5134 (1996).ADSCrossRefGoogle Scholar
  37. 37.
    C.J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    A. Kono and S. Hattori, Phys. Rev. A 29, 2981 (1984).ADSCrossRefGoogle Scholar
  39. 39.
    E.K.U. Gross and W. Kohn, Adv. Quant. Chem. 21, 255 (1990).CrossRefGoogle Scholar
  40. 40.
    S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSCrossRefGoogle Scholar
  41. 41.
    C Umrigar, A. Savin, and X. Gonze, contribution to present volume.Google Scholar
  42. 42.
    S.J.A. van Gisbergen, V.P. Osinga, O.V. Gritsenko, R. van Leeuwen, J.G. Snijders, and E.J. Baerends, J. Chem. Phys. 105, 3142 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. Petersilka
    • 1
  • U. J. Gossmann
    • 1
  • E. K. U. Gross
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgGermany

Personalised recommendations