Are Unoccupied Kohn-Sham Eigenvalues Related to Excitation Energies?

  • C. J. Umrigar
  • A. Savin
  • Xavier Gonze


In the Kohn-Sham density functional method [1,2,3,4], the true interacting-electron system is replaced by a system of non-interacting electrons in an effective potential, v eff, defined by the requirement that the density of the non-interacting electrons equals the true density. The single particle orbitals and their eigenenergies were originally introduced as a mathematical artifact in order to achieve a good approximation to the kinetic energy, leaving only a relatively small term, the exchange-correlation energy E xc, to be approximated in practical implementations of the theory. It was later shown [5] that the energy of the highest occupied orbital is in fact the negative of the ionization energy. However, most approximate functionals (such as the commonly used local density approximation [2,3,4]) yield poor approximations to it. The energies of the other occupied orbitals and of the unoccupied orbitals do not have a rigorous correspondence to excitation energies. Nevertheless, it is common practice to compare eigenvalue differences to optical spectra of molecules and solids. Since these comparisons are made using Kohn-Sham eigenvalues obtained from approximate exchange-correlation functionals, it is not clear how much of the discrepancy between theory and experiment would persist if the true Kohn-Sham eigenvalues were to be used. In this paper we show that there is a surprising degree of agreement between the exact ground-state Kohn-Sham eigenvalue differences and excitation energies, for excitations from the highest occupied orbital to the unoccupied orbitals.


Excitation Energy Local Density Approximation Principal Quantum Number Quantum Defect Unoccupied Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn and L. J. Sham, Phys Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, 1989).Google Scholar
  4. 4.
    R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).zbMATHCrossRefGoogle Scholar
  5. 5.
    J. P. Perdew, R. G. Parr, M. Levy and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).ADSCrossRefGoogle Scholar
  6. M Levy, J. P. Perdew and V. Sahni Phys. Rev. B 30, 2745 (1994).Google Scholar
  7. U. von Barth in Electronic Structure of Complex Systems, edited by P. Phariseau and W. M. Temmerman, NATO ASI Series B, vol. 113 (1984).Google Scholar
  8. 6.
    C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).ADSCrossRefGoogle Scholar
  9. 7.
    The wave function used is a minor modification of that in D. E. Freund, B. D. Huxtable and J. D. Morgan, Phys. Rev. A 29, 980 (1984). The precise form of the wave function used is described in Ref. [6].ADSCrossRefGoogle Scholar
  10. 8.
    C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, proceedings of the Mardi Gras’ 93 Conference, edited by D. A. Browne et al (World Scientific, Singapore, 1993); and unpublished.Google Scholar
  11. 9.
    C. J. Umrigar, Phys. Rev. Lett. 71, 408 (1993).ADSCrossRefGoogle Scholar
  12. 10.
    C. J. Umrigar, P. Nightingale and K. J. Runge, J. Chem. Phys. 99, 2865 (1993).ADSCrossRefGoogle Scholar
  13. 11.
    C. Filippi, C. J. Umrigar and X. Gonze in Theoretical and Computational Chemistry: Recent Developments in Density Functional Theory, edited by J. Seminario (Elsevier, 1996).Google Scholar
  14. 12.
    G. W. F. Drake in Casimir Forces: Theory and Recent Experiments on Atomic Systems, edited by F. S. Levin and D. A. Micha, (Plenum, New York 1993); G. W. F. Drake and Zong-Chao Yan, Chem. Phys. Lett. 229, 486 (1994).ADSCrossRefGoogle Scholar
  15. 13.
    G. W. F. Drake in Handbook of Atomic, Molecular, and Optical Physics, edited by G. W. F. Drake (AIP Press, New York, 1996), pp. 154–171Google Scholar
  16. E. Riis, A. G. Sinclair, O. Poulsen, G. W. F. Drake, W. R. C. Rowlwy and A. P. Levick, Phys. Rev. A 49, 207 (1994).; private communication.ADSCrossRefGoogle Scholar
  17. 14.
    O. Gunnarson and K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986).ADSCrossRefGoogle Scholar
  18. 15.
    S. Bashkin and J. D. Stoner, Atomic Energy Levels and Grotrian Diagrams, vol. 1. (North Holland 1975, addendum 1978).Google Scholar
  19. 16.
    Abdullah Al-Sharif, R. Resta and C. J. Umrigar, unpublished.Google Scholar
  20. 17.
    A. Görling and M. Levy, Int. J. Quant. Chem, Symp. 29, 93 (1995); Phys. Rev. A 50, 196 (1994).CrossRefGoogle Scholar
  21. 18.
    C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).ADSCrossRefGoogle Scholar
  22. 19.
    S. H. Patil, J. Phys. B 23, 1 (1990); J. Chem. Phys. 95, 4245 (1991).ADSCrossRefGoogle Scholar
  23. 20.
    C. Filippi, C. J. Umrigar and X. Gonze, unpublished.Google Scholar
  24. 21.
    Mark E. Casida in Theoretical and Computational Chemistry: Recent Developments in Density Functional Theory, edited by J. Seminario (Elsevier, 1996).Google Scholar
  25. 22.
    M. Petersilka and E. K. U. Gross, Int. J. Quant. Chem. 30, 1393 (1996); M. Petersilka, U. J. Gossman and E. K. U. Gross, contribution in this volume.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • C. J. Umrigar
    • 1
  • A. Savin
    • 2
  • Xavier Gonze
    • 3
  1. 1.Cornell Theory Center and Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA
  2. 2.Laboratoire de Chimie Théorique (CNRS)Université de ParisFrance
  3. 3.Unité P.C.P.M.Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations