Advertisement

Relativistic Corrections to the Exchange-Correlation Energy Functional

  • E. Engel
  • S. Keller
  • R. M. Dreizler

Abstract

During recent years the development of fully relativistic methods for electronic structure calculations has been a major trend both in atomic physics and computational quantum chemistry (see e.g.[1–5]). Looking at Gold as the prime candidate for relativistic effects this trend is easy to understand: When going from a nonrelativistic to a relativistic treatment the ionization potential of Au increases by 30% [6], the bond length of AuH is contracted by 13% and its dissociation energy increases by about 50% [6]. The differences are even more dramatic for the electron affinity: For Au a nonrelativistic CI-calculation [7] gives a value of 1.02 eV compared with 2.28 eV obtained with a fully relativistic Coupled-Cluster calculation [4]. Moreover, the fact that the relativistic Hartree-Fock (RHF) approach leads to 7.48 eV [4] for the electron affinity of Au while the nonrelativistic HF value is 0.10 eV, clearly demonstrates that relativistic and exchange-correlation (xc) effects are nonadditive.

Keywords

Ground State Energy Correlation Energy Relativistic Correction Transverse Part Photon Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Effects of Relativity in Atoms, Molecules and the Solid State, edited by S. Wilson, I. P. Grant and B. L. Gyorffy (Plenum, New York, 1991).Google Scholar
  2. 2.
    S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein, Phys. Rev. A 37, 3768 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    E. Ilyabaev and U. Kaldor, Chem. Phys. Lett. 194, 95 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Ishikawa and K. Koc, Phys. Rev. A 50, 4733 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    U. Kaldor and B. A. Hess, Chem. Phys. Lett. 230, 1 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    A. Pizlo, G. Jansen, B. A. Hess, and W. von Niessen, J. Chem. Phys. 98, 3945 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    J. P. Perdew, in Electronic Structure of Solids 1991, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991).Google Scholar
  11. 11.
    A. D. Becke, J. Chem. Phys. 96, 2155 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    A. K. Rajagopal, J. Phys. C 11, L943 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    A. H. MacDonald and S. H. Vosko, J. Phys. C 12, 2977 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    E. Engel and R. M. Dreizler, in: Density Functional Theory II, edited by R. F. Nalewajski, Topics in Current Chemistry, Vol. 181 (Springer, Berlin, 1996), p.1.Google Scholar
  17. 17.
    M. V. Ramana and A. K. Rajagopal, Phys. Rev. A 24, 1689 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    M. V. Ramana, A. K. Rajagopal, and W. R. Johnson, Phys. Rev. A 25, 96 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    E. Engel, S. Keller, A. Facco Bonetti, H. Müller, and R. M. Dreizler, Phys. Rev. A 52, 2750 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    S. Varga, W.-D. Sepp, B. Fricke, E. Engel and R. M. Dreizler, unpublished.Google Scholar
  21. 21.
    E. Engel, S. Keller, and R. M. Dreizler, Phys. Rev. A 53, 1367 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    B. A. Shadwick, J. D. Talman, and M. R. Norman, Comp. Phys. Commun. 54, 95 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    E. Engel, S. Keller, and R. M. Dreizler, unpublished.Google Scholar
  26. 26.
    V. Sahni, J. Gruenebaum, and J. P. Perdew, Phys. Rev. B 26, 4371 (1982).ADSCrossRefGoogle Scholar
  27. 27.
    D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983).ADSCrossRefGoogle Scholar
  28. 28.
    L. J. Sham, Phys. Rev. B 32, 3876 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    I. P. Grant, Proc. Roy. Soc. (London) A262, 555 (1961).MathSciNetADSGoogle Scholar
  30. 30.
    Y.-K. Kim, Phys. Rev. 154, 17 (1967).ADSCrossRefGoogle Scholar
  31. 31.
    J. B. Mann and W. R. Johnson, Phys. Rev. A 4, 41 (1971).ADSCrossRefGoogle Scholar
  32. 32.
    R. Colle and O. Salvetti, Theoret. Chim. Acta (Berl.) 37, 329 (1975).CrossRefGoogle Scholar
  33. 33.
    T. Grabo and E. K. U. Gross, Chem. Phys. Lett. 240, 141 (1995).ADSCrossRefGoogle Scholar
  34. 34.
    In all our calculations the nuclei were represented by uniformly charged spheres with nuclear radii given by R nucl = 1.0793 A 1/3 + 0.73587 fm, A being the atomic mass (weighted by isotopic abundances) taken from Table III.7 of K. Hisaka et al (Particle Data Group), Phys. Rev. D 45, Number 11, Part II (1992), unless explicitly stated otherwise. The speed of light had been set to c = 137.0359895.Google Scholar
  35. 35.
    M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).ADSCrossRefGoogle Scholar
  36. 36.
    K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Plummer, Comp. Phys. Commun. 55, 425 (1989).ADSCrossRefGoogle Scholar
  37. 37.
    I. Lindgren, H. Persson, S. Salomonson, P. Sunnergren, to be published in Proceedings of the 15th International Conference on Atomic Physics, Amsterdam, 5–9 August 1996 (World Scientific, Singapore).Google Scholar
  38. 38.
    J. B. Krieger, Y. Li and G. J. Iafrate, Phys. Lett. 146 A, 256 (1990).ADSGoogle Scholar
  39. 39.
    T. Kreibich, E. K. U. Gross, and E. Engel, Phys. Rev. A 56, in press.Google Scholar
  40. 40.
    E. Engel, diploma thesis (1983).Google Scholar
  41. 41.
    E. K. U. Gross and R. M. Dreizier, Z. Phys. A 302, 103 (1981).ADSCrossRefGoogle Scholar
  42. 42.
    P. R. Antoniewicz and L. Kleinman, Phys. Rev. B 31, 6779 (1985).ADSCrossRefGoogle Scholar
  43. 43.
    L. Kleinman and S. Lee, Phys. Rev. B 37, 4634 (1988).ADSCrossRefGoogle Scholar
  44. 44.
    J. A. Chevary and S. H. Vosko, Phys. Rev. B 42, 5320 (1990).ADSCrossRefGoogle Scholar
  45. 45.
    E. Engel and S. H. Vosko, Phys. Rev. B 42, 4940 (1990).; Phys. Rev. B 44, 1446(E) (1991).ADSCrossRefGoogle Scholar
  46. 46.
    B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1130, 1147, 1169 (1977).ADSCrossRefGoogle Scholar
  47. 47.
    E. Eliav, U. Kaldor, and Y. Ishikawa, Int. J. Quantum Chem. 28S, 205 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • E. Engel
    • 1
  • S. Keller
    • 1
  • R. M. Dreizler
    • 1
  1. 1.Institut für Theoretische PhysikUniversität FrankfurtFrankfurt/MainGermany

Personalised recommendations