A Correlation-Energy Functional for Addition to the Hartree-Fock Energy

  • Leslie C. Wilson
  • Stanislav Ivanov

Abstract

This article concerns the Wilson-Levy (WL) correlation-energy functional, Wigner-like with gradients, which was developed in 1990. Its numerical success in density functional theory (DFT) has been limited when used as part of a full DFT calculation. It has nonetheless been shown to be surprisingly accurate when used with Hartree-Fock densities as a “tack-on” functional to the completed Hartree-Fock energy. Fuentealba and Savin in 1994 pointed out that the WL yields better ionization potentials and dissociation energies for a number of atoms and molecules than other DFT correlation-energy functional when used in that way. Here possible reasons for this will be discussed.

Keywords

Density Functional Theory Local Density Approximation Correlation Energy Uniform Scaling Density Functional Theory Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).Google Scholar
  4. 4.
    R. M. Dreizler and E. K. U. Dross, Density Functional Theory (Springer-Verlag, Berlin-New York, 1990).MATHCrossRefGoogle Scholar
  5. 5.
    M. Levy, Proc. Natl. Acad. Sci (USA) 76, 6062 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Perdew, Phys. Rev. B 33, 8822 (1986).; 34, 7406 (E) (1986).ADSCrossRefGoogle Scholar
  8. 8.
    J. P. Perdew in Electronic Structure of Solids’ 91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991); J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992); J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16538 (1996).: see also chapter by Perdew et al in present Volume.ADSCrossRefGoogle Scholar
  9. 9.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    A. D. Becke, J. Chem. Phys. 88, 1053 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    L. C. Wilson and M. Levy, Phys. Rev. B 41, 12930 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    A. D. Becke, J. Chem. Phys. 33, 3098 (1988).Google Scholar
  14. 14.
    E. P. Wigner, Trans Faraday Soc. 34, 678 (1938).CrossRefGoogle Scholar
  15. 15.
    E. Kryachko and E. Ludeña, Density Functional Theory of Many-electron Systems (Kluwer, Dordrecht, 1990).CrossRefGoogle Scholar
  16. 16.
    N. H. March, Electron Density Theory of Atoms and Molecules (Academic Press, New York, 1992).Google Scholar
  17. 17.
    P. Fuentealba and A. Savin, Chem. Phys. Lett. 217, 566 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    V. Sahni, J. Gruenebaum, and J.P. Perdew, Phys. Rev. B 26, 4371 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    V. Sahni and M. Levy, Phys. Rev. B 33 (1986) 3869.ADSCrossRefGoogle Scholar
  21. 21.
    J. Harris and R. O. Jones, J. Phys. F 4, 1170 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1030 (1983).CrossRefGoogle Scholar
  23. 23.
    R. A. Harris and L. R. Pratt, J. Chem. Phys. 83, 4024 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    M. Levy, in Density Matrices and Density Functionate, edited by R. Erdahl and V.H. Smith, Jr. (Reidel, Boston, 1987), pp.479–498. This book constitutes the proceedings of the A. J. Coleman Symposium, Kingston, Canada, 1985.CrossRefGoogle Scholar
  25. 25.
    M. Levy, Phys. Rev. A 43, 4637 (1991).ADSCrossRefGoogle Scholar
  26. 26.
    M. Levy, Int. J. Quantum.Chem. 61, 281 (1997).CrossRefGoogle Scholar
  27. 27.
    S. Ivanov and M. Levy, unpublished.Google Scholar
  28. 28.
    C. Filippi, C. J. Umrigar, and M. Taut, J. Chem. Phys. 100, 1290 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    H. Ou-Yang and M. Levy, Phys. Rev. A 42, 155 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    M. Levy, Int. J. Quantum Chem. S 23, 617 (1989).Google Scholar
  31. 31.
    A. Görling and M. Levy, Phys. Rev. A 45, 1509 (1992).ADSCrossRefGoogle Scholar
  32. 32.
    M. Levy, Phys. Rev. A 26, 1200 (1982).ADSCrossRefGoogle Scholar
  33. 33.
    M. Levy in Density Functional Theory, edited by E. K. U. Gross and R. M. Dreizler(Springer-Verlag, Berlin-New York, 1990).Google Scholar
  34. 34.
    E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).CrossRefGoogle Scholar
  35. 35.
    M. Levy and H. Ou-Yang, Phys. Rev. A 42, 651 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    M. Levy and J. P. Perdew, Phys. Rev. B 48, 11639 (1993).ADSGoogle Scholar
  37. 37.
    A. Görling and M. Levy, Phys. Rev. B 47, 13105(1993).ADSCrossRefGoogle Scholar
  38. 38.
    S. Ivanov, R. Lopez-Boada, A. Görling, and M. Levy, unpublished.Google Scholar
  39. 39.
    S. Ivanov, K. Burke, and M. Levy, unpublished.Google Scholar
  40. 40.
    C. J. Huang and C. J. Umrigar, unpublished.Google Scholar
  41. 41.
    A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 15, 1 (1977).ADSCrossRefGoogle Scholar
  42. 42.
    L. C. Wilson, Chem. Phys. 181, 337 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys. Rev. 58, 12100 (1980).Google Scholar
  44. 44.
    R. McWeeny, in: The New World of Quantum Chemistry, edited by B. Pullman and R. Parr (D. Reidel Publishing Company, Boston, 1976), 3.CrossRefGoogle Scholar
  45. 45.
    G. Brual, Jr. and S. M. Rothstein, J. Chem Phys. 69, 1177 (1978).ADSCrossRefGoogle Scholar
  46. 46.
    C. J. Umrigar and X. Gonze, in High performance Computing and its Application to the Physical Sciences, proceedings of the Mardi Gras’ 93 Conference, edited by D. A. Browne et al (World Scientific, 1993).Google Scholar
  47. 47.
    C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).ADSCrossRefGoogle Scholar
  48. 48.
    L. C. Wilson, unpublished.Google Scholar
  49. 49.
    R. Colle and D. Salvetti, Theor. Chem. Acta 37, 329 (1975).CrossRefGoogle Scholar
  50. 50.
    S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. Fischer, Phys. Rev. A 47, 3649 (1993).ADSCrossRefGoogle Scholar
  51. 51.
    B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).ADSCrossRefGoogle Scholar
  52. 52.
    J. B. Lagrowski and S.H. Vosko, J. Phys. B: At. Mol. Opt. Phys. 21, 203 (1988).ADSCrossRefGoogle Scholar
  53. 53.
    C. Filippi, X. Gonze, and C. J. Umrigar, in Recent Developments and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry, Vol. 4, edited by J. M. Seminario (Elsevier, Amsterdam, 1996).Google Scholar
  54. 54.
    S. Ivanov and M. Levy, unpublished.Google Scholar
  55. 55.
    E. R. Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M. Umar, and C. F. Fischer, Phys. Rev. A 44, 7071 (1991).ADSCrossRefGoogle Scholar
  56. 56.
    S. J. Chakravorty and E. R. Davidson, J. Phys. Chem. 100, 6167 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Leslie C. Wilson
    • 1
    • 2
  • Stanislav Ivanov
    • 2
    • 3
  1. 1.Chemistry DepartmentLoyola UniversityNew OrleansUSA
  2. 2.Quantum Theory GroupTulane UniversityNew OrleansUSA
  3. 3.Chemistry DepartmentTulane UniversityNew OrleansUSA

Personalised recommendations