Indigenous Microorganisms as a Host Defense

  • Kenneth H. Wilson
Part of the Infectious Agents and Pathogenesis book series (IAPA)


A wide variety of bacteria are able to infect the human gastrointestinal tract. For many of these pathogens we have detailed knowledge at the molecular level of their pathogenic mechanisms. A common theme has emerged, namely, the process of pathogenesis is not simple. This complexity may seem curious. Why go to the trouble of traveling down chemical gradients through dense mucin to adhere to the small bowel mucosa as Vibrio cholerae does (see Chapter 3)? Why take the approach of Shigella species and penetrate the colonic mucosa, multiply intracellularly, and spread from cell to cell (see Chapter 5)? Why not simply enter the colonic lumen and multiply in a rich medium at incubator temperature and at a site that is relatively inaccessible to the immune system? In fact, no pathogen is known to perform this feat in the normal host. The presence of a complex biota appears to be such an effective host defense that pathogens have been forced to develop more devious adaptations. Diarrhea enhances the ability of an organism to spread from host to host; thus, causing diarrhea may make an organism more fit. To some extent, disease probably also occurs serendipitously when organisms are faced with an overwhelming force in the obvious place to colonize and develop elaborate ways to elude it. This chapter will attempt to clarify why pathogens have to develop the complicated pathogenic mechanisms described elsewhere in this volume.


Clostridium Difficile Blood Group Antigen Clostridium Botulinum Indigenous Microorganism Bifidobacterium Infantis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marshall, B. J., and Warren, J. R., 1984, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration, Lancet 1:1311–1314.PubMedCrossRefGoogle Scholar
  2. 2.
    Holdeman, L. V., Cato, E. P., and Moore, W. E. C., 1976, Human fecal flora: Variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 32:359–375.Google Scholar
  3. 3.
    Moore, W. E. C., 1977, Anaerobes as normal flora: Gastrointestinal tract, in: Metronidazole: Proceedings of the International Conference (S. M. Finegold, ed.), Excerpta Medica, Amsterdam, pp. 222–228.Google Scholar
  4. 4.
    Moore, W. E. C., Moore, L. V. H., and Cato, E. P., 1988, You and your flora, The U.S. Federation for Culture Collections Newsletter 18:7–22.Google Scholar
  5. 5.
    Amann, R., Springer, N., Ludwig, W., Gortx, H.-D., and Schleifer, K.-H., 1991, Identification in situ and phylogeny of uncultured bacterial endosymbionts, Nature 351:161–164.PubMedCrossRefGoogle Scholar
  6. 6.
    Rainey, F. A., and Stackebrandt, E., 1993, 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia, FEMS Microbiol. Lett. 113:125–128.PubMedCrossRefGoogle Scholar
  7. 7.
    Moore, W. E. C., and Holdeman, L. V., 1974, Human fecal flora: The normal flora of 21 Japanese-Hawaiians, Appl. Microbiol. 27:961–979.PubMedGoogle Scholar
  8. 8.
    Fox, G. E., Peckman, K., and Woese, C. R., 1977, Comparative cataloguing of 16S ribosomal ribonucleic acid: Molecular approach to prokaryotic systematics, Int. J. Syst. Bacteriol. 27: 44–57.CrossRefGoogle Scholar
  9. 9.
    Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51:221–271.PubMedGoogle Scholar
  10. 10.
    Woese, C. R., and Olsen, G.J., 1993, Ribosomal RNA: A key to phylogeny, FASEBJ. 7:113–123.Google Scholar
  11. 11.
    Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L., 1988, Use of phylogeneti-cally based hybridization probes for studies of ruminai ecology, Appl. Environ. Microbiol. 54:1079–1084.PubMedGoogle Scholar
  12. 12.
    DeLong, E. F., Wickham, G. S., and Pace, N. R., 1989, Phylogenetic strains: Ribosomal RNA-based probes for the identification of single cells, Science 243:1360–1363.PubMedCrossRefGoogle Scholar
  13. 13.
    Amann, R. I., Binder, B.J., Olson, R.J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol. 56:1919–1925.PubMedGoogle Scholar
  14. 14.
    Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J., 1986, The analysis of natural microbial populations by ribosomal RNA sequences, in: Advances in Microbial Ecology, Volume 9 (K. C. Marshall, R. Atlas, B. B. Jorgesen, and J. H. Slater, eds), Plenum Press, New York, pp. 1–55.Google Scholar
  15. 15.
    Weiler, R., and Ward, D. M., 1989, Selective recovery of 16S rRNA sequences from natural communities in the form of cDNA, Appl. Environ. Microbiol. 55:1818–1822.Google Scholar
  16. 16.
    Giovannoni, S. L., Britschgi, T. B., Moyer, C. L., and Field, K. G., 1990, Genetic diversity in Sargasso Sea bacterioplankton, Nature 345:60–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Schmidt, T. M., DeLong, E. F., and Pace, N. R., 1991, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol. 173:4371–4378.PubMedGoogle Scholar
  18. 18.
    Stackebrandt, E., Liesack, W., and Goebel, B. M., 1993, Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis, FASEBJ. 7:232–236.Google Scholar
  19. 19.
    Rochelle, P. A., Fry, J. C., Parkes, R. J., and Weightman, A. J., 1992, DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities, FEMS Microbiol. Lett. 100:59–66.Google Scholar
  20. 20.
    Wilson, K. H., Blitchington, R. B., Frothingham, R., and Wilson, J. A. P., 1991, Whipple’s disease associated with a bacterium related to Streptomyces and Arthrobacterium, Abstracts of the 31st Interscience Conference on Antimicrobial Agents and Chemotherapy 1092.Google Scholar
  21. 21.
    Solnick, J. V., O’Rourke, J., Lee, A., Paster, B. J., Dewhirst, F. E., and Tompkins, L. S., 1993, An uncultured gastric spiral organism is a newly identified Helicobacter in humans, J. Infect. Dis. 168:379–385.PubMedCrossRefGoogle Scholar
  22. 22.
    Angert, E. R., Clements, K. D., and Pace, N. R., 1993, The largest bacterium, Nature 362: 239–241.PubMedCrossRefGoogle Scholar
  23. 23.
    Duncan, A. J., Carman, R. J., Olsen, G. J., and Wilson, K. H., 1993, Assignment of the agent of Tyzzer’s disease to Clostridium piliforme comb. nov. on the basis of 16S rRNA sequence analysis, Int. J. Syst. Bacteriol. 43:314–318.PubMedCrossRefGoogle Scholar
  24. 24.
    Lindenbaum, J., 1968, Small intestine dysfunction in Pakistanis and Americans resident in Pakistan, Am. J. Clin. Nutr. 21:1023.PubMedGoogle Scholar
  25. 25.
    Raibaud, P., Ducluzeau, R., Dubos, F., Hudault, S., Bewa, H., and Muller, M. C., 1980, Implantation of bacteria from the digestive tract of man and various animals into gnoto-biotic mice, Am. J. Clin. Nutr. 33:2440–2447.PubMedGoogle Scholar
  26. 26.
    Hazenberg, M. P., Bakker, M., and Burggraaf, A. V., 1981, Effects of the human intestinal flora on germ-free mice, J. Appl. Bacteriol. 50:95–106.PubMedCrossRefGoogle Scholar
  27. 27.
    Moore, W. E. C., Cato, E. P., Good, I. J., and Holdeman, L. V. 1981, The effect of diet on the human fecal flora, in: Branbury Report 7, Gastrointestinal Cancer: Endogenous Factors (W. R. Bruce, P. Correa, M. Lipkin, S. R. Tannenbaum, and T. D. Wilkins, eds.), Cold Spring Harbor Laboratory, New York, pp. 11–24.Google Scholar
  28. 28.
    Finegold, S. M., Attebery, H. R., and Sutter, V. L., 1974, Effect of diet on human fecal flora: Comparison of Japanese and American diets, Am. J. Clin. Nutr. 27:1456–1469.PubMedGoogle Scholar
  29. 29.
    Wilson, K. H., Sheagren, J. N., and Freter, R., 1985, Population dynamics of ingested Clostridium difficile in the gastrointestinal tract of the Syrian hamster, J. Infect. Dis. 151: 355–361.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoskins, L. C., and Boulding, E. T., 1976, Degradation of blood group antigens in human colon ecosystems. I. In vitro production of ABH blood group-degrading enzymes by enteric bacteria, J. Clin. Invest. 1:63–73.CrossRefGoogle Scholar
  31. 31.
    Hoskins, L. C., and Boulding, E. T., 1976, Degradation of blood group antigens in human colon ecosystems. II. A gene interaction in man that affects the fecal population density of certain enteric bacteria, J. Clin. Invest. 1:74–82.CrossRefGoogle Scholar
  32. 32.
    Wilson, K. H., and Perini, F., 1988, Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora, Infect. Immun. 56:2610–2614.PubMedGoogle Scholar
  33. 33.
    Bollard, J. E., Vanderwee, M. A., Smith, G. W., Tasman-Jones, C., Gavin, J. B., and Lee, S. P., 1986, Location of bacteria in the mid-colon of the rat, Appl. Environ. Microbiol. 51:604–608.PubMedGoogle Scholar
  34. 34.
    Cohen, P. S., Rossoll, R., Cabelli, V.J., Yang, S.-L., and Laux, D. C., 1983, Relationship between the mouse colonizing ability of a human fecal strain and its ability to bind a specific mouse colonic mucous gel protein, Infect. Immun. 40:62–69.PubMedGoogle Scholar
  35. 35.
    Boren, T., Falk, P., Roth, K. A., Larson, G., and Normark, S., 1993, Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens, Science 262:1892–1895.PubMedCrossRefGoogle Scholar
  36. 36.
    Midura, T. F., and Arnon, S. S., 1976, Infant botulism: Identification of Clostridium botulinum and its toxins in feces, Lancet 2:934–936.PubMedCrossRefGoogle Scholar
  37. 37.
    Viscidi, R., Willey, S., and Bartlett, J. G., 1981, Isolation rates and toxigenic potential of Clostridium difficile isolates from various populations, Gastroenterology 81:5–9.PubMedGoogle Scholar
  38. 38.
    Chia, J. K., Clark, J. B., Ryan, C. A., and Pollack, M., 1986, Botulism in an adult associated with food-borne intestinal infection with Clostridium botulinum, N. Engl. J. Med. 315:239–240.PubMedCrossRefGoogle Scholar
  39. 39.
    Bohnhoff, M., Drake, B. L., and Miller, C. P., 1954, Effect of streptomycin on susceptibility of the intestinal tract to experimental salmonella infection, Proc. Soc. Exp. Biol. Med. 86:132–137.PubMedCrossRefGoogle Scholar
  40. 40.
    Freter, R., 1955, Fatal enteric cholera infection in the guinea pig achieved by inhibition of normal enteric flora, J. Infect. Dis. 97:57–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Krause, W., Matheis, H., and Wulf, K., 1969, Fungaemia and funguria after oral administration of Candida albicans, Lancet 1:598–599.PubMedCrossRefGoogle Scholar
  42. 42.
    Buck, A. C., and Cooke, M., 1969, The fate of ingested Pseudomonas aeruginosa in normal persons, J. Med. Microbiol. 2:521–525.PubMedCrossRefGoogle Scholar
  43. 43.
    Wells, C. L., and Balish, E., 1983, Clostridium tetani growth and toxin production in the intestines of germfree rats, Infect. Immun. 41:826–828.PubMedGoogle Scholar
  44. 44.
    Schimpff, S. C., Young, V. M., Greene, W. H., Vermeulen, G. D., Moody, M. R., and Wiernik, P. H., 1972, Origin of infection in acute nonlymphocytic leukemia: Significance of hospital acquisition of potential pathogens, Ann. Intern. Med. 77:707–714.PubMedCrossRefGoogle Scholar
  45. 45.
    Freter, R., and Abrams, G. D., 1972, Function of various intestinal bacteria in converting germfree mice to the normal state, Infect. Immun. 6:119–126.PubMedGoogle Scholar
  46. 46.
    Wilson, K. H., and Freter, R., 1986, Interactions of Clostridium difficile and E. coli with micro-floras in continuous-flow cultures and gnotobiotic mice, Infect. Immun. 54:354–358.PubMedGoogle Scholar
  47. 47.
    Su, W. J., Bourlioux, P., Bournaud, M., Besnier, M. O., and Fourniat, J., 1986, Mise au point d’un modele experimental animal permettant de la microflore coecale du hamster, antagoniste de Clostridium difficile, Ann. Inst. Pasteur (Paris) 137A:89–96.CrossRefGoogle Scholar
  48. 48.
    Wilson, K. H., and Sheagren, J. N., 1983, Antagonism of toxigenic Clostridium difficile by nontoxigenic C. difficile, J. Infect. Dis. 147:733–736.PubMedCrossRefGoogle Scholar
  49. 49.
    Seal, D., Borriello, S. P., Barclay, F. E., Welch, A., Piper, M., and Bonnycastle, M., 1987, Treatment of relapsing Clostridium difficile diarrhea by administration of a nontoxigenic strain, Eur. J. Clin. Microbiol. 6:51–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Shinefield, H. R., Ribble, J. C., Boris, M., and Eichenwald, H. F., 1963, Bacterial interference: Its effect on nursery-acquired infection with Staphylococcus aureus. I. Preliminary observations on artificial colonization of newborns, Am. J. Dis. Child. 105:146–154.Google Scholar
  51. 51.
    Shinefield, H. R., Ribble, J. C., Eichenwald, H. F., Boris, M., and Sutherland, J. M., 1963, An analysis and interpretation, Am. J. Dis. Child. 105:683–688.PubMedGoogle Scholar
  52. 52.
    Branche, W. C., Jr., Young, V. M., Robinet, H. G., and Massey, E. D., 1963, Effect of colicine production on Escherichia coli in the normal human intestine, Proc. Soc. Exp. Biol. Med. 114: 198–201.PubMedCrossRefGoogle Scholar
  53. 53.
    Suzuki, K., Benno, Y., Mitsuoka, T., Takebe, S., Kobashi, K., and Hase, J., 1979, Urease-producing species of intestinal anaerobes and their activities, Appl. Environ. Microbiol. 37: 379–382.PubMedGoogle Scholar
  54. 54.
    Freter, R., 1974, Interactions between mechanisms controlling the intestinal microflora, Am. J. Clinc. Nutr. 27:1409–1416.Google Scholar
  55. 55.
    Hentges, D. J., and Freter, R., 1962, In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. I. Correlation between various tests, J. Infect. Dis. 110:30–37.PubMedCrossRefGoogle Scholar
  56. 56.
    Monod, J., 1950, La technique de cultur continue: theorie et applications, Ann. Inst Pasteur (Paris) 79:390–410.Google Scholar
  57. 57.
    Novik, A., and Szilard, L., 1950, Experiments with the chemostat on spontaneous mutations of bacteria, Proc. Natl. Acad. Sci. USA 36:708–719.CrossRefGoogle Scholar
  58. 58.
    Freter, R., 1962, In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. IL The inhibitory mechanism, J. Infect. Dis. 110:38–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Freter, R., Stauffer, E., Cleven, D., Holdeman, L. V., and Moore, W. E. C., 1983, Continuous-flow cultures as in vitro models of the ecology of large intestinal flora, Infect. Immun. 39: 666–675.PubMedGoogle Scholar
  60. 60.
    Veilleux, B. G., and Rowland, I., 1981, Simulation of the rat intestinal ecosystem using a two-stage continuous culture system, J. Gen. Microbiol. 123:103–115.PubMedGoogle Scholar
  61. 61.
    Miller, T. L., and Wolin, M. J., 1981, Fermentation by the human large intestine microbial community in a semicontinuous culture system, Appl. Environ. Microbiol. 42:400–407.PubMedGoogle Scholar
  62. 62.
    Ozawa, A., and Freter, R., 1964, Ecologic mechanism controlling growth of Escherichia coli in continuous-flow culture and in the mouse intestine, J. Infect. Dis. 114:235–242.PubMedCrossRefGoogle Scholar
  63. 63.
    Freter, R., Brickner, H., Botney, M., Cleven, D., and Aranki, A., 1983, Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora, Infect. Immun. 39:676–685.PubMedGoogle Scholar
  64. 64.
    Guiot, H. F., 1982, Role of competition for substrate in bacterial antagonism in the gut, Infect. Immun. 38:887–892.PubMedGoogle Scholar
  65. 65.
    Freter, R., Brickner, H., Fekete, J., Vickerman, M. M., and Carey, K. E., 1983, Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun. 39:686–703.PubMedGoogle Scholar
  66. 66.
    Duvall-Iflah, Y., Raibaud, P., and Rousseau, M., 1981, Antagonisms among isogenic strains of Escherichia coli in the digestive tracts of gnotobiotic mice, Infect. Immun. 34:957–969.Google Scholar
  67. 67.
    Frederickson, A. G., 1977, Behavior of mixed cultures of microorganisms, Annu. Rev. Microbiol. 31:63–87.CrossRefGoogle Scholar
  68. 68.
    Rolfe, R. D., 1984, Role of volatile fatty acids in colonization resistance to Clostridium difficile, Infect. Immun. 45:185–191.PubMedGoogle Scholar
  69. 69.
    Hentges, D.J., and Maier, B. R., 1972, Inhibition of Shigella flexneri by the normal intestinal flora. III Interactions with Bacteroides fragilis in vitro, Infect. Immun. 6:168–173.PubMedGoogle Scholar
  70. 70.
    Maier, B. R., and Hentges, D. J., 1972, Experimental shigella infection in animals, Infect. Immun. 6:168–173.PubMedGoogle Scholar
  71. 71.
    Su, W. J., Waechter, M. J., Bourlioux, P., Dolegeal, M., Fourniat, J., and Mahuzier, G., 1987, Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice, Infect. Immun. 55:1686–1691.PubMedGoogle Scholar
  72. 72.
    Meynell, G. G., 1963, Antibacterial mechanisms of the mouse gut, Br. J. Exp. Pathol. 44: 209–219.PubMedGoogle Scholar
  73. 73.
    Krogfelt, K. A., Poulsen, L. K., and Molin, S., 1993, Identification of coccoid Escherichia coli BJ4 cells in the large intestine of streptomycin-treated mice, Infect. Immun. 61:5029–5034.PubMedGoogle Scholar
  74. 74.
    McCormick, B. A., Laux, D. C., and Cohen, P. S., 1990, Neither motility nor chemotaxis plays a role in the ability of Escherichia coli F-18 to colonize the streptomycin-treated mouse large intestine, Infect. Immun. 58:2957–2961.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kenneth H. Wilson
    • 1
  1. 1.Infectious Diseases SectionVA Medical Center, and Duke UniversityDurhamUSA

Personalised recommendations