Combustion Hazards

  • Frederick J. Edeskuty
  • Walter F. Stewart
Part of the The International Cryogenics Monograph Series book series (ICMS)


One of the most feared hazards in any system is that of unwanted combustion. The possibility of fire and explosion is a legitimate cause for concern and for additional attention to system safety. Although carbon monoxide, as well as oxygen and condensed air (see Chapter 9), can present a combustion hazard, here we will be concerned with liquid hydrogen and, to a lesser extent, with liquefied natural gas (LNG).


Liquid Hydrogen Ignition Source Combustible Mixture National Fire Protection Association Cryogenic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hord, J. (1976). Is Hydrogen Safe?, National Bureau of Standards Technical Note 690, Institute of Basic Standards, National Bureau of Standards, Boulder, Colorado.Google Scholar
  2. 2.
    National Fire Protection Association (1962). National Electric Code, Article 501—Class I Locations, National Fire Protection Association, Quincy, Massachusetts.Google Scholar
  3. 3.
    Cassutt, L., Biron, D., and Vonnegut, B. (1962). Electrostatic hazards associated with the transfer and storage of liquid hydrogen, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 7, pp. 327–335, Plenum Press, New York.Google Scholar
  4. 4.
    Arthur D. Little, Inc. (1961). Final Report, Electrostatic Hazards Associated with the Transfer and Storage of Liquid Hydrogen, Contract AF 18(600)-1687, Arthur D. Little, Inc., Cambridge, Massachusetts.Google Scholar
  5. 5.
    Willis, W. L. (1966). Electrical conductivity of some cryogenic fluids, Cryogenics 6 (October), 279.CrossRefGoogle Scholar
  6. 6.
    Willis, W. L. personal communication.Google Scholar
  7. 7.
    Chelton, D. B. (1964). Safety in the use of liquid hydrogen, Chapter 10 in Technology and Uses of Liquid Hydrogen (R. B. Scott, W. H. Denton, and C. M. Nicholls, eds.), Chap. 10, Pergamon Press, Oxford.Google Scholar
  8. 8.
    Edeskuty, F. J. (1979). Safety, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr., eds.), Vol. IV, Chap. 5, CRC Press, Boca Raton, Florida.Google Scholar
  9. 9.
    Straitz, J. F. III (1987). Flare technology safety, Chem. Eng. Prog. 83(2), 53–62.Google Scholar
  10. 10.
    Zabetakis, M. G. (1967). Safety with Cryogenic Fluids, Plenum Press, New York.Google Scholar
  11. 11.
    Witcofski, R. D., and Chirivella, J. E. (1984). Experimental and analytical analysis of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills, in Proceedings of the World Hydrogen Energy Conference IV (T. N. Veziroglu, W. D. Van Vorst, and J. H. Kelley, eds.), Pergamon Press, Elmsford, New York.Google Scholar
  12. 12.
    Stewart, W. F., Dewart, J. M., and Edeskuty, F. J. (1990). Safe venting of hydrogen, in Hydrogen Energy Progress VIII (T. N. Veziroglu, ed.), Pergamon Press, New York.Google Scholar
  13. 13.
    Custer, R. L. P., and Bright, R. G. (1974). Fire Detection: State-Of-The-Art, NASA Lewis Research Center Report NASA CR-134642, Cleveland, Ohio.Google Scholar
  14. 14.
    Bowen, T. L. (1975). Investigation of Hazards Associated with Using Hydrogen as a Military Fuel, Naval Ship Research and Development Center Report 4541, Bethesda, Maryland.Google Scholar
  15. 15.
    Ordin, P. M. (1974). Review of hydrogen accidents and incidents in NASA operations, in Proceedings of the Ninth Intersociety Energy Conversion Engineering Conference, pp. 442-453, American Society of Mechanical Engineers, San Francisco, California.Google Scholar
  16. 16.
    Hardee, H. C, and Lee, D. O. (1977/78). A simple conduction model for skin burns resulting from chemical fireballs, Fire Res. 1, 199.Google Scholar
  17. 17.
    Weintraub, A. A. (1965). Control of Liquid Hydrogen Hazards at Experimental Facilities, Health and Safety Laboratory Report HASL-160, U.S. Atomic Energy Commission, New York.Google Scholar
  18. 18.
    Reider, R., Otway, H., and Knight, H. T. (1965). An unconfined, large-volume hydrogen/air explosion, Pyrodynamics 2, 249–261.Google Scholar
  19. 19.
    Brewer, G. D. (1991). Hydrogen Aircraft Technology, CRC Press, Boca Raton, Florida.Google Scholar
  20. 20.
    National Fire Protection Association (1994). Liquefied Hydrogen Systems at Consumer Sites, National Fire Protection Association Report NFPA 50B, Quincy, Massachusetts.Google Scholar
  21. 21.
    Edeskuty, F. J., Reider, R., and Williamson, K. D., Jr. (1971). Safety, in Cryogenic Fundamentals, (G. G. Haseiden, ed.), Chap. 11, Academic Press, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Frederick J. Edeskuty
    • 1
  • Walter F. Stewart
    • 1
  1. 1.Los Alamos National Laboratory (Retired)Los AlamosUSA

Personalised recommendations