Skip to main content

Buildup of Pressure in Closed Systems

  • Chapter
  • 287 Accesses

Part of the book series: The International Cryogenics Monograph Series ((ICMS))

Abstract

From the large volumetric ratios shown in Table 1.1, one can infer that as confined volumes of cryogens experience heat input, which they must unless there is a source of refrigeration, pressure can build up. Unless gas can be vented from the system, this pressure increase will continue until eventually either liquid density at ambient temperature is approached or the container ruptures. Starting with saturated liquid at 1 atm, the upper pressure limits that can be attained in this manner are enormous and, in most cases, cannot be sustained without vessel rupture. Table 5.1 presents estimates of these pressure limits, which can only be reached if, at the start of the confinement, the container is completely filled with the liquid phase of the cryogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edeskuty, F. J. (1979). Safety, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr., eds.), Vol. IV, Chap. 5, CRC Press, Boca Raton, Florida.

    Google Scholar 

  2. Van Wylen, G. J., and Sonntag, R. E. (1987). Fundamentals of Classical Thermodynamics, 3rd Ed., John Wiley & Sons, New York.

    Google Scholar 

  3. Dodge, B. F. (1944). Chemical Engineering Thermodynamics, McGraw-Hill, New York.

    Google Scholar 

  4. Laquer, H. L. personal communication.

    Google Scholar 

  5. Edeskuty, F. J., and Williamson, K. D., Jr. (1977). Liquid hydrogen storage and transmission, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr., eds.), Vol. II, Chap. 3, CRC Press, Boca Raton, Florida.

    Google Scholar 

  6. Barron, R. F. (1985). Cryogenic Systems, 2nd Ed., Oxford University Press, New York.

    Google Scholar 

  7. Timmerhaus, K. D., and Flynn, T. M. (1989). Cryogenic Process Engineering, Plenum Press, New York.

    Book  Google Scholar 

  8. Sallet, D. W. (1978). On the sizing of pressure relief valves for pressure vessels which are used in the transport of liquefied gases, Paper 78-WA/HY-39, presented at the ASME Winter Annual Meeting, San Francisco, California, December 10–15, 1978, American Society of Mechanical Engineers, New York.

    Google Scholar 

  9. Smith, R. V (1971). Fluid dynamics, in Cryogenic Fundamentals (G. G. Haseiden, ed.), Chap. 5, Academic Press, London.

    Google Scholar 

  10. Bronson, J. C., Edeskuty, F. J., Fretwell, J. H., Hammel, E. F., Keller, W. E., Meier, K. L., Schuch, A. F., and Willis, W. L. (1962). Problems in cool-down of cryogenic systems, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 7, pp. 198–205, Plenum Press, New York.

    Google Scholar 

  11. Thurston, R. S., Rogers, J. D., and Skoglund, V. J. (1967). Pressure oscillations induced by forced convection heating of dense hydrogen, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 12, pp. 438–451, Plenum Press, New York.

    Google Scholar 

  12. Rogers, J. D. (1968). Oscillations in flowing and heated subcritical hydrogen, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 13, pp. 223–231, Plenum Press, New York.

    Google Scholar 

  13. Gu, Y, and Timmerhaus, K. D. (1994). Experimental verification of stability characteristics for thermal acoustic oscillations in a liquid helium system, in Advances in Cryogenic Engineering (P. Kittel, ed.), Vol. 39B, pp. 1733–1740, Plenum Press, New York.

    Chapter  Google Scholar 

  14. Johnson, P. C. (1983). Liquefied natural gas, in Liquid Cryogens (K. D. Williamson, Jr., and F. J. Edeskuty, eds.), Vol. II, Chap. 3, CRC Press, Boca Raton, Florida.

    Google Scholar 

  15. Sarsten, J. A. (1972). LNG stratification and rollover, Pipeline Gas J. 199(9), 37.

    Google Scholar 

  16. Wilson, M. N. (1983). Superconducting Magnets, Clarendon Press, Oxford.

    Google Scholar 

  17. Slack, D. S. (1989). Analysis of quench-vent pressures for present design of ITER TF Coils, Paper presented at the 13th Symposium on Fusion Engineering, Knoxville, Tennessee, October 2–6, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edeskuty, F.J., Stewart, W.F. (1996). Buildup of Pressure in Closed Systems. In: Safety in the Handling of Cryogenic Fluids. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0307-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0307-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0309-9

  • Online ISBN: 978-1-4899-0307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics