Advertisement

Buildup of Pressure in Closed Systems

  • Frederick J. Edeskuty
  • Walter F. Stewart
Part of the The International Cryogenics Monograph Series book series (ICMS)

Abstract

From the large volumetric ratios shown in Table 1.1, one can infer that as confined volumes of cryogens experience heat input, which they must unless there is a source of refrigeration, pressure can build up. Unless gas can be vented from the system, this pressure increase will continue until eventually either liquid density at ambient temperature is approached or the container ruptures. Starting with saturated liquid at 1 atm, the upper pressure limits that can be attained in this manner are enormous and, in most cases, cannot be sustained without vessel rupture. Table 5.1 presents estimates of these pressure limits, which can only be reached if, at the start of the confinement, the container is completely filled with the liquid phase of the cryogen.

Keywords

Heat Input Pressure Rise Pressure Oscillation Liquid Hydrogen Pressure Relief 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edeskuty, F. J. (1979). Safety, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr., eds.), Vol. IV, Chap. 5, CRC Press, Boca Raton, Florida.Google Scholar
  2. 2.
    Van Wylen, G. J., and Sonntag, R. E. (1987). Fundamentals of Classical Thermodynamics, 3rd Ed., John Wiley & Sons, New York.Google Scholar
  3. 3.
    Dodge, B. F. (1944). Chemical Engineering Thermodynamics, McGraw-Hill, New York.Google Scholar
  4. 4.
    Laquer, H. L. personal communication.Google Scholar
  5. 5.
    Edeskuty, F. J., and Williamson, K. D., Jr. (1977). Liquid hydrogen storage and transmission, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr., eds.), Vol. II, Chap. 3, CRC Press, Boca Raton, Florida.Google Scholar
  6. 6.
    Barron, R. F. (1985). Cryogenic Systems, 2nd Ed., Oxford University Press, New York.Google Scholar
  7. 7.
    Timmerhaus, K. D., and Flynn, T. M. (1989). Cryogenic Process Engineering, Plenum Press, New York.CrossRefGoogle Scholar
  8. 8.
    Sallet, D. W. (1978). On the sizing of pressure relief valves for pressure vessels which are used in the transport of liquefied gases, Paper 78-WA/HY-39, presented at the ASME Winter Annual Meeting, San Francisco, California, December 10–15, 1978, American Society of Mechanical Engineers, New York.Google Scholar
  9. 9.
    Smith, R. V (1971). Fluid dynamics, in Cryogenic Fundamentals (G. G. Haseiden, ed.), Chap. 5, Academic Press, London.Google Scholar
  10. 10.
    Bronson, J. C., Edeskuty, F. J., Fretwell, J. H., Hammel, E. F., Keller, W. E., Meier, K. L., Schuch, A. F., and Willis, W. L. (1962). Problems in cool-down of cryogenic systems, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 7, pp. 198–205, Plenum Press, New York.Google Scholar
  11. 11.
    Thurston, R. S., Rogers, J. D., and Skoglund, V. J. (1967). Pressure oscillations induced by forced convection heating of dense hydrogen, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 12, pp. 438–451, Plenum Press, New York.Google Scholar
  12. 12.
    Rogers, J. D. (1968). Oscillations in flowing and heated subcritical hydrogen, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 13, pp. 223–231, Plenum Press, New York.Google Scholar
  13. 13.
    Gu, Y, and Timmerhaus, K. D. (1994). Experimental verification of stability characteristics for thermal acoustic oscillations in a liquid helium system, in Advances in Cryogenic Engineering (P. Kittel, ed.), Vol. 39B, pp. 1733–1740, Plenum Press, New York.CrossRefGoogle Scholar
  14. 14.
    Johnson, P. C. (1983). Liquefied natural gas, in Liquid Cryogens (K. D. Williamson, Jr., and F. J. Edeskuty, eds.), Vol. II, Chap. 3, CRC Press, Boca Raton, Florida.Google Scholar
  15. 15.
    Sarsten, J. A. (1972). LNG stratification and rollover, Pipeline Gas J. 199(9), 37.Google Scholar
  16. 16.
    Wilson, M. N. (1983). Superconducting Magnets, Clarendon Press, Oxford.Google Scholar
  17. 17.
    Slack, D. S. (1989). Analysis of quench-vent pressures for present design of ITER TF Coils, Paper presented at the 13th Symposium on Fusion Engineering, Knoxville, Tennessee, October 2–6, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Frederick J. Edeskuty
    • 1
  • Walter F. Stewart
    • 1
  1. 1.Los Alamos National Laboratory (Retired)Los AlamosUSA

Personalised recommendations