Stresses Caused by Thermal Contraction

  • Frederick J. Edeskuty
  • Walter F. Stewart
Part of the The International Cryogenics Monograph Series book series (ICMS)


Although there are exceptions over limited temperature ranges, materials generally have positive thermal expansion coefficients. Usually, the temperature change from ambient to cryogenic temperature will amount to as much as 200 K (360 °F) or greater. This large temperature decrease will cause a significant thermal contraction in any material being cooled from ambient temperature to cryogenic temperature. However, the thermal expansion coefficient is also a function of temperature, decreasing as the temperature is lowered. Figure 4.1 shows the temperature dependence of the thermal expansion coefficient of copper.1 Although there is still further contraction below the temperature of liquid nitrogen, usually over 90% of the total contraction from room temperature to any lower temperature will have already taken place at 77 K because of the decrease in the thermal expansion coefficient for many materials with temperature. Consequently, in cooling from ambient temperature to any cryogenic temperature, there will be a thermal contraction of about 0.3% in iron-based alloys, over 0.4% in aluminum, and well over 1% in many plastics. The first two of these figures give useful rule-of-thumb values for quick estimates. The more accurate values needed for system design can be obtained from published tables of integrated thermal contraction over the temperature range of interest. Tables 4.1 and 4.2 give some representative examples.2 Figure 4.2 shows the total integrated thermal contraction from ambient temperature down to any cryogenic temperature for several materials.3


Cryogenic Temperature Liquid Hydrogen Thermal Contraction Allowable Stress Annular Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, V. J., ed. (1960). A Compendium of the Properties of Materials at Low Temperature (Phase 1), WADD Technical Report 60-56, Part II, Properties of Solids, Office of Technical Services, U.S. Department of Commerce, Washington, D.C.Google Scholar
  2. 2.
    Scott, R. B. (1988). Cryogenic Engineering, Met-Chem Research, Boulder, Colorado.Google Scholar
  3. 3.
    Wigley, D. A., and Halford, P. (1971). Materials of construction and techniques of fabrication, in Cryogenic Fundamentals (G. G. Haseiden, ed.), Chap. 6, Academic Press, London.Google Scholar
  4. 4.
    Barron, R. F. (1985). Cryogenic Systems, Oxford University Press, New York.Google Scholar
  5. 5.
    Edeskuty, F. J., and Williamson, K. D., Jr. (1977). Liquid hydrogen storage and transmission, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr., eds.), Vol. II, Chap. 3, CRC Press, Boca Raton, Florida.Google Scholar
  6. 6.
    Novak, J. K. (1970). Cool-down flow rate limits imposed by thermal stresses in liquid hydrogen or nitrogen pipelines, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 15, pp. 346–353, Plenum Press, New York.Google Scholar
  7. 7.
    Dittus, F. W, and Boelter, L. M. K. (1930). University of California Publications in Engineering, Vol. 2, UCLA Press, Los Angeles, p. 443.Google Scholar
  8. 8.
    Bronson, J. C., Edeskuty, F. J., Fretwell, J. H., Hammel, E. F., Keller, W. E., Meier, K. L., Schuch, A. F., and Willis, W. L. (1960). Problems in cool-down of cryogenic systems, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 7, pp. 198–205, Plenum Press, New York.Google Scholar
  9. 9.
    Baker, O. (1954). Design of pipe lines for simultaneous flow of oil and gas, Oil Gas J. 53(July 26), 185.Google Scholar
  10. 10.
    Edeskuty, F. J., Reider, R., and Williamson, K. D., Jr. (1971). Safety, in Cryogenic Fundamentals (G. G. Haseiden, ed.), Chap. 11, Academic Press, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Frederick J. Edeskuty
    • 1
  • Walter F. Stewart
    • 1
  1. 1.Los Alamos National Laboratory (Retired)Los AlamosUSA

Personalised recommendations