Skip to main content

Part of the book series: The International Cryogenics Monograph Series ((ICMS))

  • 230 Accesses

Abstract

In general, materials tend to increase in strength as their temperature is lowered. The deformation of metals occurs with the movement of crystal-lattice dislocations. As the temperature is raised, the thermal energy of the vibrating atoms assists this movement. Hence, as the temperature is lowered, the decreased thermal vibration of the metal lattice adds to the strength of the material.1 However, in the design of cryogenic equipment it is usually best to use the ambient-temperature strength because of temperature gradients that might exist within the equipment and also because cryogenic equipment frequently must operate at warmer temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg, H. M. (1971). The behavior of materials at low temperature, in Advanced Cryogenics (C. A. Bailey, ed.), Chap. 3, Plenum Press, London.

    Google Scholar 

  2. Wigley, D. A., and Halford, P. (1971). Construction materials and fabrication techniques, in Cryogenic Fundamentals (G. G. Haseiden, ed.), Chap. 6, Academic Press, New York.

    Google Scholar 

  3. Zabetakis, M. G. (1967). Safety with Cryogenic Fluids, Plenum Press, New York.

    Google Scholar 

  4. Durham, T. F., McClintock, R. M., and Reed, R. P. (1962). Cryogenic Materials Data Handbook, Office of Technical Services, Washington, D.C.

    Google Scholar 

  5. McClintock, R. M., and Gibbons, H. P. (1960). Mechanical Properties of Structural Materials at Low Temperatures, a Compilation from the Literature, National Bureau of Standards Monograph 13, U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  6. Timmerhaus, K. D., and Flynn, T. M. (1989). Cryogenic Process Engineering, Plenum Press, New York.

    Book  Google Scholar 

  7. Johnson, W. H. (1875). On some remarkable changes produced in iron and steel by the action of hydrogen and acids, Proc. R. Soc. London 23, 168.

    Google Scholar 

  8. Gray, H. R. (1974). Testing for hydrogen environment embrittlement: Experimental variables, in Hydrogen Embrittlement Testing, ASTM STP-543, American Society for Testing and Materials, Philadelphia, Pennsylvania.

    Google Scholar 

  9. Edeskuty, F. J., et al., (1979). Critical Review and Assessment of Environmental and Safety Problems in Hydrogen Energy Systems, Los Alamos Scientific Laboratory Report LA-7820-PR, Los Alamos, New Mexico.

    Google Scholar 

  10. Dodge, B. F. (1953). High pressure research in the chemical engineering department of Yale University, Trans. ASME 75, 331.

    CAS  Google Scholar 

  11. Mills, R. L., and Edeskuty, F. J. (1956). Chem. Eng. Prog. 52(11), 477.

    Google Scholar 

  12. Swisher, J. H., Keaton, S. C., West, A. J., and Jones, A. T. (1974). Survey of Hydrogen Compatibility Problems in Energy Storage and Energy Transmission Systems, Sandia Laboratories Energy Report SAND74-8219, Albuquerque, New Mexico.

    Google Scholar 

  13. Cavett, R. H., and Van Ness, H. C. (1963). Embrittlement of steel by high pressure hydrogen gas, Weld. Res. Supple. 1963 (July), 316s.

    Google Scholar 

  14. Caskey, G. R., Jr. (1983). Hydrogen Compatibility Handbook for Stainless Steels, E. I. du Pont de Nemours & Co. Report DP-1643, Savannah River Laboratory, Aiken, South Carolina.

    Google Scholar 

  15. Hirth, J. P. (1984). Theories of hydrogen induced cracking of steels, in Hydrogen Embrittlement and Stress Corrosion Cracking (R. Gibala and R. F. Hehemann, eds.), American Society for Metals, Metal Park, Ohio.

    Google Scholar 

  16. Birnbaum, H. K. (1990). Mechanisms of hydrogen-related fracture of metals, in Environment-Induced Cracking of Metals (R. P. Gangloff and M. B. Ives, eds.), NACE-10, National Association of Corrosion Engineers, Houston, Texas.

    Google Scholar 

  17. Oriani, R. A., Hirth, J. P., and Smialowski, M., eds. (1985). Hydrogen Degradation of Ferrous Alloys, Noyes Publications, Park Ridge, New Jersey.

    Google Scholar 

  18. Walter, R. J., and Chandler, W. T. (1968). Effects of high pressure hydrogen on storage vessel materials, Proceedings of the ASM Westec Conference, March 11–14, 1968, Los Angeles, American Society of Metals, Metals Park, Ohio.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edeskuty, F.J., Stewart, W.F. (1996). Embrittlement of Materials. In: Safety in the Handling of Cryogenic Fluids. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0307-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0307-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0309-9

  • Online ISBN: 978-1-4899-0307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics