Skip to main content

Abstract

Although slush hydrogen has been studied for about three decades, its use on a larger scale has become of greater interest because of its importance to aerospace applications such as the National Aero-Space Plane (NASP). This chapter discusses briefly the properties and characteristics of slush hydrogen that can influence the safety of its handling, the nature of potential safety hazards arising from these properties, and the design and operational considerations needed to make safe the operation of slush-hydrogen systems.1 In some cases, the safe handling of slush hydrogen will require the further elucidation of some safety problems. A discussion of safety problems that need further research, either analytic or experimental, or both, is given in Chapter 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edeskuty, F. J., Stewart, W. F., and Mann, D. B. (1991). Slush Hydrogen Safety, NASP Technical Memorandum 1145, NASA Langley Research Center, Langley, Virginia.

    Google Scholar 

  2. Roder, H. M. (1977). The Thermodynamic Properties of Slush Hydrogen and Oxygen, NBSIR 77-859, U.S. National Bureau of Standards, Boulder, Colorado.

    Google Scholar 

  3. McCarty, R. D., Hord, J., and Roder, H. M. (1981). Selected Properties of Hydrogen (Engineering Design Data), NBS Monograph 168, U.S. Department of Commerce/U.S. National Bureau of Standards, Washington, D.C.

    Google Scholar 

  4. Mullins, J. C, Ziegler, W. T., and Kirk, B. S. (1961). The Thermodynamic Properties of Parahydrogen from 1 to 22 K, Technical Report No. 1, Project No. A-593, Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Georgia.

    Google Scholar 

  5. Willis, W. L. (1966). Electrical conductivity of some cryogenic fluids, Cryogenics 6 (October), 279.

    Article  CAS  Google Scholar 

  6. Scott, R. B. (1988). Cryogenic Engineering, Met-Chem Research Inc., Boulder, Colorado.

    Google Scholar 

  7. Scott, R. B., Brickwedde, F. G., Urey, H. C, and Wahl, M. H. (1934). J. Chem. Phys. 2, 454.

    Article  CAS  Google Scholar 

  8. Farkas, A. (1935). Orthohydrogen and Heavy Hydrogen, Cambridge University Press, Cambridge, England.

    Google Scholar 

  9. Greene, N. E., and Sonntag, R. E. (1968). Solid-liquid-vapor equilibrium in the system hydrogen-helium, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 13, pp. 357–362, Plenum Press, New York.

    Google Scholar 

  10. Smith, S. R. (1952). Gas-Liquid Phase Equilibrium in the He-H2 System, Ph.D. Thesis, Ohio State University, Columbus, Ohio.

    Google Scholar 

  11. Street, W. B., Sonntag, R. E., and Van Wylen, G. J. (1964). Liquid-vapor equilibrium in the system normal hydrogen-helium, J. Chem. Phys. 40, 1390.

    Article  Google Scholar 

  12. Laquer, H. L. personal communication.

    Google Scholar 

  13. Edeskuty, F. J., and Williamson, K. D., Jr. (1977). Liquid hydrogen storage and transmission, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr. eds.), Vol. II, Chap. 3, CRC Press, Boca Raton, Florida.

    Google Scholar 

  14. Gu, Y., and Timmerhaus, K. D. (1994). Experimental verification of stability characteristics for thermal acoustic oscillations in a liquid helium system, in Advances in Cryogenic Engineering (P. Kittel, ed.), Vol. 39, pp. 1733–1748, Plenum Press, New York.

    Chapter  Google Scholar 

  15. Ludtke, P. R. (1970). Slush Hydrogen Flow Facility, U.S. National Bureau of Standards Report 9752, Boulder, Colorado.

    Google Scholar 

  16. Arthur D. Little, Inc. (1961). Final Report, Electrostatic Hazards Associated with the Transfer and Storage of Liquid Hydrogen, Report to the Agena and Centaur Systems Office, Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama.

    Google Scholar 

  17. Mann, D. B., Ludtke, P. R., Sindt, C. F., Chelton, D. B., Daney, D. E., and Pollack, G. L. (1965). Characteristics of Liquid-Solid Mixtures of Hydrogen at the Triple Point, U.S. National Bureau of Standards Report 8881, Boulder, Colorado.

    Google Scholar 

  18. Sindt, C. F. (1970). A summary of the characterization study of slush hydrogen, Cryogenics, 10(5), 372–380.

    Article  CAS  Google Scholar 

  19. Voth, R. O. (1978). Producing liquid-solid mixtures of hydrogen using an auger, U.S. National Bureau of Standards Report NBSIR 78-875, Boulder, Colorado.

    Google Scholar 

  20. Voth, R. O., Ludtke, P. R., and Brennan, J. A. (1990). Producing slush hydrogen with a small auger, National Aero-Space Plane Technical Memorandum 1099, National Aeronautics and Space Administration Langley Research Center, Langley, Virginia.

    Google Scholar 

  21. Waynert, J. A., Barclay, J. A., Claybaker, C., Foster, R. W., Jaeger, S. R., Kral, S., and Zimm, C. (1988). Production of slush hydrogen using magnetic refrigeration, in Proceedings of the 7th Intersociety Cryogenics Symposium of the ASME, Houston, Texas, Jan. 22–25, 1989 (C. F. Gottzmann, L. C. Kun, K. D. Timmerhaus, and L. Wenzel, eds.), The American Society of Mechanical Engineers, New York.

    Google Scholar 

  22. Military Specification, Propellant, Hydrogen, MIL-P-27201B (1971).

    Google Scholar 

  23. Compressed Gas Association (1990). CGA G-5.3, Commodity Specification for Hydrogen, Compressed Gas Association, Arlington, Virginia.

    Google Scholar 

  24. Scott, L. E., Robbins, R. F., Mann, D. B., and Birmingham, B. W. (1960). Temperature stratification in a nonventing liquid helium Dewar, J. Res. 64C(1), 19.

    Google Scholar 

  25. Mann, D. B., Sindt, C. F., Ludtke, P. R., and Chelton, D. B. (1966). Slush Hydrogen Fluid Characterization and Instrumentation Analysis, U.S. National Bureau of Standards Report 9265, Boulder, Colorado.

    Google Scholar 

  26. Daney, D. E., Ludtke, P. R., Chelton, D. B., and Sindt, C. F. (1968). Slush Hydrogen Pumping Characteristics, U.S. National Bureau of Standards Technical Note 364, Boulder, Colorado.

    Google Scholar 

  27. Sindt, C. F., Ludtke, P. R., and Daney, D. E. (1969). Slush Hydrogen Fluid Characterization and Instrumentation, U.S. National Bureau of Standards Technical Note 377, Boulder, Colorado.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edeskuty, F.J., Stewart, W.F. (1996). Slush Hydrogen. In: Safety in the Handling of Cryogenic Fluids. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0307-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0307-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0309-9

  • Online ISBN: 978-1-4899-0307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics