Advertisement

Detection of Oxidative DNA Base Damages

Immunochemical and Electrochemical Approaches
  • Robert J. Melamede
  • Yoke Wah Kow
  • Ivan A. Bespalov
  • Susan S. Wallace

Abstract

Antibodies to a variety of oxidized DNA bases have been generated in a number of laboratories including our own (see Table I). Most of these antibodies have been elicited using protein-conjugated haptens of interest. In general, the antibodies have reasonable affinity such that appropriate sensitivity in the various assays can be achieved. The difficulty with antibodies that recognize oxidized DNA bases is that the oxidized bases do not differ largely from their unoxidized derivatives. Thus, the specificity for detecting lesions in DNA must be high especially when one considers the low level of damaged compared to undamaged bases. Even if the sensitivity of the assay can be amplified, cross-reactivity of the antibody with the unoxidized base in DNA remains an obstacle to successful detection of low levels of the oxidized base. This particular problem is not seen as often when antibodies are elicited to the chemical adducts that have features that vary quite dramatically from the unadducted base. An additional consideration is that the lesion must be stable to the procedures used during preparation of the immunogen and during DNA denaturation. The latter is usually necessary since the antibodies often do not recognize the lesion as well in duplex DNA. Despite these shortcomings, antibodies to oxidized bases have been effectively utilized to detect these lesions in oxidized or ionizing radiation-treated DNA in vitro.

Keywords

Competitive ELISA Isoamyl Alcohol Immunochemical Detection Guanidinium Hydrochloride Thymine Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbas, C. F., III, and Lerner, R. A. (1991). Combinatorial immunoglobulin libraries on the surface of phage (Phabs):Rapid selection of antigen-specific Fabs, in:Methods: A Companion to Methods in Enzymology, Vol. 2 (R. A. Lerner and D. R. Burton, eds.), Academic Press, Orlando, pp. 119–124.Google Scholar
  2. Barbas, C. F., Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc. Natl. Acad. Sci. USA 88:7978–7982.PubMedCrossRefGoogle Scholar
  3. Berger, M., Anselmino, C., Mouret, J.-F., and Cadet, J. (1990). High performance liquid chromatography-electrochemical assay for monitoring the formation of 8-oxo-7,8-dihydroadenine and its related 2′-deoxy-ribonucleoside. J. Liquid Chromatogr. 13:929–940.CrossRefGoogle Scholar
  4. Bespalov, I. A., Purmal, A. A., Erlanger, B. F., Wallace, S. S., and Melamede, R. J. (1996a). Antibodies to oxidized pyrimidines selected from combinatorial phage display libraries. Submitted for publication.Google Scholar
  5. Bespalov, I. A., Purmal, A. A., Wallace, S. S., and Melamede, R. J. (1996b). Recombinant Phabs reactive with 7-hydro-8-oxoguanine, a major oxidative DNA lesion. Biochemistry, 35:2067–2078.PubMedCrossRefGoogle Scholar
  6. Chen, B. X., Hubbard, K., Ide, H., Wallace, S. S., and Erlanger, B. F (1990). Characterization of a monoclonal antibody to thymidine glycol monophosphate. Radiat. Res. 124:131–136.PubMedCrossRefGoogle Scholar
  7. Chen, B. X., Kubo, K., Ide, H., Erlanger, B. E, Wallace, S. S., and Kow, Y. W. (1992). Properties of a monoclonal antibody for the detection of abasic sites, a common DNA lesion. Mutat. Res. 273:253–261.PubMedCrossRefGoogle Scholar
  8. Cwirla, S. E., Peters, E. H., Barrett, R. W., and Dower, W. S. (1990). Peptides on phage: A vast library of peptides for identifying ligands. Proc. Natl Acad. Sci. USA 87:6378–6382.PubMedCrossRefGoogle Scholar
  9. Degan, P., Shigenaga, M. K., Park, E. M., Alperin, P. E., and Ames, B. N. (1991). Immunoaffinity isolation of urinary 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanine and quantitation of 8-hydroxy-2′-deoxyguano-sine in DNA by polyclonal antibodies. Carcinogenesis 12:865–871.PubMedCrossRefGoogle Scholar
  10. Devlin, J. J., Panganiban, L. C., and Devlin, P. E. (1990). Random peptide libraries: A source of specific protein binding molecules. Science 249:404–406.PubMedCrossRefGoogle Scholar
  11. Floyd, R. A., Watson, J. J., Wong, P. K., Altmiller, D. H., and Richard, R. C. (1986a). Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Rad. Res. Commun. 1:163–172.CrossRefGoogle Scholar
  12. Floyd, R. A., Watson, J. J., Harris, J., West, M. and Wong, P. K. (1986b). Formation of 8-hydroxydeoxyguanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to the tumor promoter, tetradecanoylphorbol-acetate. Biochem. Biophys. Res. Commun. 137:841–846.PubMedCrossRefGoogle Scholar
  13. Fraga, C. G., Shigenaga, M. K., Park, J.-W, Degan, P., and Ames, B. N. (1990). Oxidative damage to DNA during aging:8-hdroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. USA 87:4533–4537.PubMedCrossRefGoogle Scholar
  14. Friguet, B., Chaffotte, A. R., Djavadi-Ohaniance, L., and Goldberg, M. E. (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77:305–319.PubMedCrossRefGoogle Scholar
  15. Fuciarelli, A. F., Miller, G. G., and Raleigh, J. A. (1985). An immunochemical probe for 8,5’-cycloadenosine-5′-monophosphate and its deoxy analog in irradiated nucleic acids. Radiat. Res. 104:272–284.PubMedCrossRefGoogle Scholar
  16. Fuciarelli, A. F., Shum, F. Y., and Raleigh, J. A. (1987). Intramolecular cyclization in irradiated nucleic acids: Correlation between high-performance liquid chromatography and an immunochemical assay for 8,5′-cycloadenosine in irradiated poly(A). Radiat. Res. 110:35–44.PubMedCrossRefGoogle Scholar
  17. Hubbard, K., Huang, H., Laspia, M. F., Ide, H. Erlanger, B. F., and Wallace, S. S. (1989a). Immunochemical quantitation of thymine glycol in oxidized and X-irradiated DNA. Radiat. Res. 118:257–268.PubMedCrossRefGoogle Scholar
  18. Hubbard, K., Ide, H., Erlanger, B. R., and Wallace, S. S. (1989b). Characterization of antibodies to dihydro-thymine, a radiolysis product of DNA. Biochemistry 28:4382–4387.PubMedCrossRefGoogle Scholar
  19. Ide, H., Kow, Y. W, Chen, B.-X., Erlanger, B. R., and Wallace, S.S. (1996). Properties of antibodies elicited to 7-hydro-8-oxopurines and their reaction with X-irradiated DNA. Submitted for publication.Google Scholar
  20. Kaneko, M., and Leadon, S. A. (1986). Production of thymine glycols in DNA by N-hydroxy-2-naphthylamine as detected by a monoclonal antibody. Cancer Res. 46:71–75.PubMedGoogle Scholar
  21. Kaneko, M., Leadon, S. A., and Ito, T. (1988). Relationship between the induction of mitotic gene conversion and the formation of thymine glycols in yeast S. cerevisiae treated with hydrogen peroxide. Mutat. Res. 207:17–22.PubMedCrossRefGoogle Scholar
  22. Kasai, H., Crain, P. R., Kuchino, Y, Nishimura, S., Ootsuyama, A., and Tanooka, H. (1986). Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7:1849–1851.PubMedCrossRefGoogle Scholar
  23. Kasai, H., Okada, Y, Nishimura, S., Rao, M. S., and Reddy, J. K. (1989). Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res. 49:2603–2605.PubMedGoogle Scholar
  24. Kiyosawa, H., Suko, M., Okudaira, H., Murata, K., Miyamoto, T., Chung, M.-H., Kasai, H., and Nishimura, S. (1990). Cigarette smoking induces formation of 8-hydroxyguanosine, one of the oxidative DNA damages in human peripheral leukocytes. Free Rad. Res. Commun. 11:1–3.CrossRefGoogle Scholar
  25. Leadon, S. A. (1988). Immunological probes for lesions and repair patches in DNA, in:DNA Repair. A Laboratory Manual of Research Procedures (E. C. Friedberg and P.C. Hanawalt, eds.), Dekker, New York, pp. 311–326.Google Scholar
  26. Leadon, S. A., and Hanawalt, P. C. (1983). Monoclonal antibody to DNA containing thymine glycol. Mutat. Res. 112:191–200.PubMedCrossRefGoogle Scholar
  27. Leadon, S. A., and Lawrence, D. A. (1992). Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J. Biol. Chem. 267:23175–23182.PubMedGoogle Scholar
  28. Leadon, S. A., Stampfer, M. R., and Bartley, J. (1988). Production of oxidative DNA damage during the metabolic activation of benzo[a]pyrene in human mammary epithelial cells correlates with cell killing. Proc. Natl. Acad. Sci. USA 85:4365–4368.PubMedCrossRefGoogle Scholar
  29. Lewis, H. L., Muhleman, D. R., and Ward, J. R (1978). Serologic assay of DNA base damage. 1.5-Hydroxymethyl-deoxyuridine, a radiation product of thymidine. Radiat. Res. 75:305–316.PubMedCrossRefGoogle Scholar
  30. Loft, S., Astrup, A., Buemann, B., and Poulsen, H. E. (1994). Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 536:534–537.Google Scholar
  31. Park, E. M., Shigenaga, M. K., Degan, P., Korn, T. S., Kitzler, J. W, Wehr, C. M., Kolachana, P., and Ames, B. N. (1992). Assay of oxidized DNA lesions: Isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc. Natl. Acad. Sci. USA 89:3375–3378.PubMedCrossRefGoogle Scholar
  32. Rajagopalan, R., Melamede, R. J., Laspia, M. R., Erlanger, B. F., and Wallace, S. S. (1984). Properties of antibodies to thymine glycol, a product of the radiolysis of DNA. Radiat. Res. 97:499–510.PubMedCrossRefGoogle Scholar
  33. Scott, J. K., and Smith, G. P. (1990). Searching for peptide ligands with an epitope library. Science 249:386–390.PubMedCrossRefGoogle Scholar
  34. Shigenaga, M. K., and Ames, B. N. (1991). Assays for 8-hydroxy-2′-deoxyguanosine: A biomarker of in vivo oxidative DNA damage. Free Rad. Biol. Med. 10:211–216.PubMedCrossRefGoogle Scholar
  35. Shigenaga, M. K., Gimeno, C. J., and Ames, B. N. (1989). Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. USA 86:9697–9701.PubMedCrossRefGoogle Scholar
  36. Shigenaga, M. K., Aboujaoude, E. N., Chen, Q., and Ames, B. N. (1994). Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection, in:Methods in Enzymology: Oxygen Radicals in Biological Systems, Part D (L. Packer, ed.), Academic Press, San Diego, CA, pp. 16–33.CrossRefGoogle Scholar
  37. Takeuchi, T., Nakajima, M., Ohta, Y, Kanae, M., Takeshita, T., and Morimoto, K. (1994). Evaluation of 8-hydroxydeoxyguanosine, a typical oxidative DNA damage, in human leukocytes. Carcinogenesis 15:1519–1523.PubMedCrossRefGoogle Scholar
  38. Wagner, J. R., Hu, C. C., and Ames, B. N. (1992). Endogenous oxidative damage of deoxycytidine in DNA. Proc. Natl. Acad. Sci. USA 89:3380–3384.PubMedCrossRefGoogle Scholar
  39. West, G. J., West, I. W.-L., and Ward, J. E. (1982a). Radioimmunoassay of 7,8-dihydro-8-oxadenine (8-hydroxy adenine). Int. J. Radiat. Biol. 42:481–490.CrossRefGoogle Scholar
  40. West, G. J., West, I. W.-L., and Ward, J. F. (1982b). Radioimmunoassay of a thymine glycol. Radiat. Res. 90:595–608.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Robert J. Melamede
    • 1
  • Yoke Wah Kow
    • 1
  • Ivan A. Bespalov
    • 1
  • Susan S. Wallace
    • 1
  1. 1.Department of Microbiology and Molecular Genetics, The Markey Center for Molecular GeneticsThe University of VermontBurlingtonUSA

Personalised recommendations