Advertisement

Monoclonal Antibody-Based Quantification and Repair Analysis of Specific Alkylation Products in DNA

  • Jürgen Thomale
  • Jörg Engelbergs
  • Frank Seiler
  • Manfred F. Rajewsky

Abstract

Exposure of cells to DNA-reactive agents (exogenous and endogenous carcinogens and mutagens; cancer chemotherapeutic compounds) results in a variety of potentially mutagenic and/or cytotoxic modifications of genomic DNA (Singer and Grunberger, 1983; Hemminki and Ludlum, 1984; Rajewsky, 1989; Loeb, 1989). The molecular nature of specific DNA lesions (e.g., carcinogen-DNA adducts, DNA modifications caused by UV light or oxygen radicals) is dictated by the structure and chemical reactivity of the causative agent and, therefore, represents a “genomic fingerprint” (Singer and Grunberger, 1983; Basu and Essigmann, 1988; Rajewsky, 1989). The analysis of agent-specific DNA modifications is of considerable importance for the molecular epidemiology of carcinogen exposure as well as for the pre- and intratherapeutic dosimetry of exposure to anticancer agents (see, e.g., Umbenhauer et al., 1985; Huh et al., 1989; Groopman et al., 1991; Müller et al., 1994)

Keywords

Alkylation Product Specific Gene Sequence Target Gene Sequence IARC Scientific Publ Specific Gene Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamkiewicz, J., Drosdziok, W., Eberhardt, W., Langenberg, U., and Rajewsky, M. F. (1982). High-affinity monoclonal antibodies specific for DNA components structurally modified by alkylating agents, in:Indicators of Genotoxic Exposure, Banbury Report 13 (B. A. Bridges, B. E. Butterworth, and I. B. Weinstein, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 265–276.Google Scholar
  2. Adamkiewicz, J., Nehls, P., and Rajewsky, M. F. (1984). Immunological methods for detection of carcinogen-DNA adducts, in:Monitoring Human Exposure to Carcinogenic and Mutagenic Agents (A. Berlin, M. Draper, K. Hemminki, and H. Vainio, eds.), IARC Scientific Publ. No. 59, International Agency for Research on Cancer, Lyon, pp. 199–215.Google Scholar
  3. Adamkiewicz, J., Eberle, G., Huh, N., Nehls, P., and Rajewsky, M. F. (1985). Quantification and visualization of alkyl deoxynucleosides in the DNA of mammalian cells by monoclonal antibodies. Environ. Health Perspect. 62:49–55.PubMedCrossRefGoogle Scholar
  4. Adamkiewicz, J., Ahrens, O., Eberle, G., Nehls, P., and Rajewsky, M. F. (1986). Monoclonal antibody-based immunoanalytical methods for detection of carcinogen-modified DNA components, in:The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (B. Singer and H. Bartsch, eds.), IARC Scientific Publ. No. 70, International Agency for Research on Cancer, Lyon, pp. 403–411.Google Scholar
  5. Basu, A. K., and Essigmann, J. M. (1988). Site specifically modified oligodeoxynucleotides as probes for the structural and biological effects of DNA damaging agents. Chem. Res. Toxicol 1:1–18.PubMedCrossRefGoogle Scholar
  6. Bohr, V. A., Evans, M. K., and Fornace, A. J., Jr. (1989). Biology of disease. DNA repair and its pathogenetic implications. Lab. Invest. 61:143–161.PubMedGoogle Scholar
  7. Denissenko, M. F., Venkatachalam, S., Yamasaki, E. F., and Wani, A. A. (1994). Assessment of DNA damage and repair in specific genomic regions by quantitative immuno-coupled PCR. Nucleic Acids Res. 22:2351–2359.PubMedCrossRefGoogle Scholar
  8. Eberle, G. (1989). Monoklonale Antikörper gegen Kanzerogen-DNA Addukte, Ph.D. dissertation, University of Essen, Essen, Germany.Google Scholar
  9. Eberle, G., Barbain, A., Laib, R. J., Ciroussel, F., Thomale, J., Bartsch, H., and Rajewsky, M. F. (1989). 1,N6-etheno-2′-deoxyadenosine and 3,N4-etheno-2′-deoxycytidine detected by monoclonal antibodies in lung and liver DNA of rats exposed to vinyl chloride. Carcino genesis 10:209–212.CrossRefGoogle Scholar
  10. Eberle, G., Glüsenkamp, K.-H., Drosdziok, W., and Rajewsky, M. F. (1990). Monoclonal antibodies for the specific detection of 3-alkyladenines in nucleic acids and body fluids. Carcinogenesis 11:1753–1759.PubMedCrossRefGoogle Scholar
  11. Friedberg, E. C., Walker, G. C., and Siede, W. (1995). DNA Repair and Mutagenesis, ASM Press, Washington, DC.Google Scholar
  12. Glüsenkamp, K.-H., Krüger, K., Eberle, G., Drosdziok, W, Jähde, E., Gründel, O., Neuhaus, A., Boese, R., Stellberg, P., and Rajewsky, M. F. (1993). Tautomer-specific anti-(N-3 substituted)-adenine antibodies: New tools in molecular dosimetry and epidemiology. Angew. Chem. Int. Ed. Engl. 32:1640–1643.CrossRefGoogle Scholar
  13. Groopman, J. D., Sabbioni, G., and Wild, C. P. (1991). Molecular dosimetry of human aflatoxin exposures, in:Molecular Dosimetry and Human Cancer (J. D. Groopman and P. L. Skipper, eds.), CRC Press, Boca Raton, FL, pp. 303–324.Google Scholar
  14. Hemminki, K., and Ludlam, D. B. (1984). Covalent modifications of DNA by antineoplastic agents. J. Natl. Cancer Inst. 73:1021–1023.PubMedGoogle Scholar
  15. Hochleitner, K., Thomale, J., Nikitin, A. Y., and Rajewsky, M. F. (1991). Monoclonal antibody-based, selective isolation of DNA fragments containing an alkylated base to be quantified in defined gene sequences. Nucleic Acids Res. 19:4467–4472.PubMedCrossRefGoogle Scholar
  16. Huh, N., and Rajewsky, M. F. (1986). Enzymatic elimination of O6-ethylguanine and stability of O4-ethylthymine in the DNA of malignant neural cell lines exposed to N-ethyl-N-nitrosourea in culture. Carcinogenesis 7:435–439.PubMedCrossRefGoogle Scholar
  17. Huh, N., Satoh, M. S., Shiga, J., Rajewsky, M. F., and Kuroki, T. (1989). Immunoanalytical detection of O4-ethylthymine in liver DNA of individuals with or without malignant tumors. Cancer Res. 49:93–97.PubMedGoogle Scholar
  18. Kang, H. I., Konishi, C., Eberle, G., Rajewsky, M. F., Kuroki, T., and Huh, N.-H. (1992). Highly sensitive, specific detection of O6-methylguanine, O4-methylthymine, and O4-ethylthymine by the combination of high-performance liquid chromatography prefractionation, 32P-postlabeling, and immunoprecipitation. Cancer Res. 52:5307–5312.PubMedGoogle Scholar
  19. Loeb, L. A. (1989). Endogenous carcinogenesis: Molecular oncology into the twenty-first century—residential address. Cancer Res. 49:5489–5496.PubMedGoogle Scholar
  20. Müller, M. R., Seiler, F., Thomale, J., Buschfort, C., Rajewsky, M. F., and Seeber, S. (1994). Capacity of individual chronic lymphatic leukemia lymphocytes and leukemic blast cells for repair of O6-ethylguanine in DNA:Relation to chemosensitivity in vitro and treatment outcome. Cancer Res. 54:4524–4531.PubMedGoogle Scholar
  21. Müller, R. (1983). Determination of affinity and specificity of anti-hapten antibodies by competitive radioimmunoassay. Methods Enzymol. 92:589–601.PubMedCrossRefGoogle Scholar
  22. Müller, R., and Rajewsky, M. F. (1978). Sensitive radioimmunoassay for detection of O6-ethyldeoxyguanosine in DNA exposed to the carcinogen ethylnitrosourea in vivo or in vitro. Z. Naturforsch. 33c:897–901.Google Scholar
  23. Müller, R., and Rajewsky, M. F. (1980). Immunological quantification by high-affinity antibodies of O6-ethyldeoxyguanosine in DNA exposed to N-ethyl-N-nitrosourea. Cancer Res. 40:887–896.PubMedGoogle Scholar
  24. Müller, R., and Rajewsky, M. F. (1981). Antibodies specific for DNA components structurally modified by chemical carcinogens. J. Cancer Res. Clin. Oncol. 102:99–113.PubMedCrossRefGoogle Scholar
  25. Nehls, P., and Rajewsky, M. F. (1985a). Differential formation of O6-ethylguanine in the DNA of rat brain chromatin fibers of different folding levels exposed to N-ethyl-N-nitrosourea in vitro. Cancer Res. 45:1378–1383.PubMedGoogle Scholar
  26. Nehls, P., and Rajewsky, M. F. (1985b). Ethylation of nucleophilic sites in DNA by N-ethyl-N-nitrosourea depends on chromatin structure and ionic strength. Mut. Res. 150:13–21.CrossRefGoogle Scholar
  27. Nehls, P., and Rajewsky, M. F. (1990). Monoclonal antibody-based immunoassay for the determination of cellular enzymatic activity for repair of specific carcinogen-DNA adducts (O6-alkylguanine). Carcinogenesis 11:81–87.PubMedCrossRefGoogle Scholar
  28. Nehls, P., Adamkiewicz, J., and Rajewsky, M. F. (1984). Immuno-slot-blot: A highly sensitive immunoassay for the quantitation of carcinogen-modified nucleosides in DNA. J. Cancer Res. Clin. Oncol. 108:23–29.PubMedCrossRefGoogle Scholar
  29. Nehls, P., Spiess, E., Weber, E., Berger, J., and Rajewsky, M. F. (1988). Distribution of O6-ethylguanine in DNA exposed to ethylnitrosourea in vitro as visualized by electron microscopy using a monoclonal antibody. Mutat. Res. 198:179–189.PubMedCrossRefGoogle Scholar
  30. Pfeifer, G. P., Drouin, R., and Holmquist, G. H. (1993). Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat. Res. 288:39–46.PubMedCrossRefGoogle Scholar
  31. Rajewsky, M. F. (1989). Formation, distribution, and enzymatic repair of specific carcinogen adducts in genomic DNA:Relevance for malignant transformation, in:Accomplishments in Cancer Research 1988 (J. G. Fortner and J. E. Rhoads, eds.), Lippincott, Philadelphia, pp. 273–283.Google Scholar
  32. Rajewsky, M. F., Müller, R., Adamkiewicz, J., and Drosdziok, W. (1980). Immunological detection and quantification of DNA components structurally modified by alkylating carcinogens (ethylnitrosourea), in:Carcinogenesis: Fundamental Mechanisms and Environmental Effects (B. Pullman, P. O. P. Ts’o, and H. Gelboin, eds.), Reidel, Dordrecht, pp. 207–218.CrossRefGoogle Scholar
  33. Satoh, M. S., Moriyama, C., Asai, A., Handa, H., Rajewsky, M. F, Kuroki, T., and Huh, N. (1991). Monoclonal antibody-mediated solid-phase assay for mammalian O6-alkylguanine DNA alkyltransferase activity. Anal. Biochem. 196:403–409.PubMedCrossRefGoogle Scholar
  34. Seiler, F., Kirstein, U., Eberle, G., Hochleitner, K., and Rajewsky, M. F. (1993). Quantification of specific DNA O-alkylation products in individual cells by monoclonal antibodies and digital imaging of intensified nuclear fluorescence. Carcinogenesis 14:1907–1913.PubMedCrossRefGoogle Scholar
  35. Sendowski, K., and Rajewsky, M. F. (1991). DNA sequence dependence of guanine-O6 alkylation by the N-nitroso carcinogens N-methyl-and N-ethyl-N-nitrosourea. Mutat. Res. 250:153–160.PubMedCrossRefGoogle Scholar
  36. Singer, B., and Grunberger, D. (1983). Molecular Biology of Mutagens and Carcinogens, Plenum Press, New York.CrossRefGoogle Scholar
  37. Thomale, J., Huh, N., Nehls, P., Eberle, G., and Rajewsky, M. F. (1990). Repair of O6-ethylguanine in DNA protects rat 208F cells from tumorigenic conversion by N-ethyl-N-nitrosourea. Proc. Natl. Acad. Sci. USA 87:9883–9887.PubMedCrossRefGoogle Scholar
  38. Thomale, J., Hochleitner, K., and Rajewsky, M. F. (1994a). Differential formation and repair of the mutagenic DNA alkylation product O6-ethylguanine in transcribed and non-transcribed genes of the rat. J. Biol. Chem. 269:1681–1686.PubMedGoogle Scholar
  39. Thomale, J., Seiler, F., Müller, M. R., Seeber, S., and Rajewsky, M. F. (1994b). Repair of O6-alkylguanines in the nuclear DNA of human lymphocytes and leukaemic cells: Analysis at the single-cell level. Br. J. Cancer 69:698–705.PubMedCrossRefGoogle Scholar
  40. Tornaletti, S., and Pfeifer, G. P. (1994). Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 263:1436–1438.PubMedCrossRefGoogle Scholar
  41. Tornaletti, S., Rozek, D., and Pfeifer, G. P. (1993). The distribution of UV photoproducts along the human p53 gene and its relation to mutation in skin cancer. Oncogene 8:2051–2057.PubMedGoogle Scholar
  42. Umbenhauer, D., Wild, C. P., Montesano, R., Saffhill, R., Boyle, J. M., Huh, N., Kirstein, U., Thomale, J., Rajewsky, M. F., and Lu, S. H. (1985). O6-methyldeoxyguanosine in oesophageal DNA among individuals at high risk of oesophageal cancer. Int. J. Cancer 36:661–665.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jürgen Thomale
    • 1
  • Jörg Engelbergs
    • 1
  • Frank Seiler
    • 1
  • Manfred F. Rajewsky
    • 1
  1. 1.Institute of Cell Biology (Cancer Research), West German Cancer Center EssenUniversity of Essen Medical SchoolEssenGermany

Personalised recommendations