Advertisement

Radioimmunoassay of DNA Damaged by Ultraviolet Light

  • David L. Mitchell

Abstract

Quantitative imunoassays such as radioimmunoassay (RIA) and enzyme-linked immunosorbant assay (ELISA) are sensitive and reliable procedures used to measure UV photoproducts in purified sample DNA (Eggset et al., 1983; Strickland, 1985; Mitchell and Nairn, 1989; Matsunaga et al., 1990; Wani and Arezina, 1991; Vink et al., 1993). Competitive immunoassays have distinct advantages over other procedures in the analysis of DNA damage in human and environmental samples. For instance, unlike spectroscopic analyses, immunoassays are not limited to certain classes of adducts, and unlike HPLC and 32P-postlabeling, immunoanalysis of DNA damage does not require hydrolysis of sample DNA which can decrease the signal-to-noise ratio and alter chemical structure. ELISAs and RIAs require minimal sample manipulation and have been performed on crude cell lysates. In addition, sample DNA does not require prelabeling with a radioactive tracer and antibody binding is quasi-independent of molecular weight (i.e., DNA degradation). Immunoassays are thus readily applied to a variety of biological materials and have typically been used to measure DNA damage in cell and organ cultures, normal tissues and tumor biopsies, and various other samples including buccal cells, bone marrow aspirates, and peripheral blood lymphocytes. RIA is a sensitive and facile technique for measuring genotoxic damage in DNA.

Keywords

Fluence Rate Normal Rabbit Serum Buccal Cell Antiserum Dilution Thymine Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blommaert, F. A., Michael, C., Terheggen, P. M., Muggia, F. M., Kortes, V., Schornagel, J. H., Hart, A. A., and den Engelse, L. (1993). Drug-induced DNA modification in buccal cells of cancer patients receiving carboplatin and cisplatin combination chemotherapy, as determined by an immunocytochemical method: Interindividual variation and correlation with disease response. Cancer Res. 53:5669–5675.PubMedGoogle Scholar
  2. Brylawski, B. P., Cordeiro-Stone, M., and Kaufman, D. G. (1991). The use of rabbit polyclonal antibodies for the isolation of carcinogen-adducted DNA by immunoprecipitation. Mol. Carcinogen. 4:315–321.CrossRefGoogle Scholar
  3. Cadet, J., and Vigny, P. (1990). The photochemistry of nucleic acids, in:Bioorganic Photochemistry, Volume I (H. Morrison, ed.), Wiley, New York, pp. 1–272.Google Scholar
  4. Chao, C. C., Shieh, T. C., and Huang, H. (1994). Use of a monoclonal antibody to detect DNA damage caused by the anticancer drug cis-diamminedichloroplatinum (II) in vivo and in vitro. FEBS Lett 354:103–109.PubMedCrossRefGoogle Scholar
  5. Culp, S. J., Poirier, M. C., and Beland, F. A. (1993). Biphasic removal of DNA adducts in a repetitive DNA sequence after dietary administration of 2-acetylaminofluorene. Environ. Health Perspect. 99:273–275.PubMedCrossRefGoogle Scholar
  6. Eberle, G., Barbain, A., Laib, R. J., Ciroussel, F., Thomale, J., Bartsch, H., and Rajewsky, M. J. (1989). 1,N6-etheno-2′-deoxyadenosine and 3,N4-etheno-2′-deoxycytidine detected by monoclonal antibodies in lung and liver DNA of rats exposed to vinyl chloride. Carcinogenesis 10:209–212.PubMedCrossRefGoogle Scholar
  7. Eggset, G., Volden, G., and Krokan, H. (1983). U.v.-induced DNA damage and its repair in human skin in vivo studied by sensitive immunohistochemical methods. Carcinogenesis 4:745–750.PubMedCrossRefGoogle Scholar
  8. Fadlallah, S., Lachapelle, M., Krzystyniak, K., Cooper, S., Denizeau, F., Guertin, F., and Fournier, M. (1994). 06-methylguanine-DNA adducts in rat lymphocytes after in vivo exposure to N-nitrosodimethylamine (NDMA). Int. J. Immunopharmacol. 16(7):583–591.PubMedCrossRefGoogle Scholar
  9. Fichtinger-Schepman, A. M., Baan, R. A., and Berends, F. (1989). Influence of the degree of DNA modification on the immunochemical determination of cisplatin-DNA adduct levels. Carcinogenesis 10:2367–2369.PubMedCrossRefGoogle Scholar
  10. Foiles, P. G., Chung, F.-L., and Hecht, S. S. (1987). Development of a monoclonal antibody-based immunoassay for cyclic DNA adducts resulting from exposure to crotonaldehyde. Cancer Res. 47:360–363.PubMedGoogle Scholar
  11. Foiles, P. G., Akerkar, S. A., and Chung, F.-L. (1989). Application of an immunoassay for cyclic acrolein deoxyguanosine adducts to assess their formation in DNA of Salmonella typhimurium under conditions of mutation by acrolein. Carcinogenesis 10:87–90.PubMedCrossRefGoogle Scholar
  12. Gasparro, F. P., and Santella, R. M. (1988). Immunoassay of DNA damage. Photochem. Photobiol. 48:321–328.PubMedCrossRefGoogle Scholar
  13. Groopman, J. D., Zhu, J. Q., Donahue, P. R., Pikul, A., Zhang, L. S., Chen, J. S., and Wogan, G. N. (1992). Molecular dosimetry of urinary aflatoxin-DNA adducts in people living in Guangxi Autonomous Region, People’s Republic of China. Cancer Res. 52:45–52.PubMedGoogle Scholar
  14. Hochleitner, K., Thomale, J., Nikitin, A. Y., and Rajewsky, M. F. (1991). Monoclonal antibody-based, selective isolation of DNA fragments containing an alkylated base to be quantified in defined gene sequences. Nucleic Acids Res. 19:4467–4472.PubMedCrossRefGoogle Scholar
  15. Hsieh, L. L., and Hsieh, T. T. (1993). Detection of aflatoxin B1-DNA adducts in human placenta and cord blood. Cancer Res. 53:1278–1280.PubMedGoogle Scholar
  16. Huitfeldt, H. S., Brandtzaeg, P., and Poirier, M. C. (1990). Reduced DNA adduct formation in replicating liver cells during continuous feeding of a chemical carcinogen. Proc. Natl. Acad. Sci. USA 8:5955–5958.CrossRefGoogle Scholar
  17. Huitfeldt, H. S., Beland, F. A., Fullerton, N. F., and Poirier, M. C. (1994). Immunohistochemical and micro-fluorometric determination of hepatic DNA adduct removal in rats fed 2-acetylaminofluorene. Carcinogenesis 15:2599–2603.PubMedCrossRefGoogle Scholar
  18. Lamola, A. A., and Yamane, T. (1967). Sensitized photodimerization of thymine in DNA. Proc. Natl. Acad. Sci. USA 58:443–446.PubMedCrossRefGoogle Scholar
  19. Leadon, S. A., and Hanawalt, P. C. (1983). Monoclonal antibody to DNA containing thymine glycol. Mutat. Res. 112:191–200.PubMedCrossRefGoogle Scholar
  20. Lee, B. M., and Strickland, P. T. (1993). Antibodies to carcinogen-DNA adducts in mice chronically exposed to polycyclic aromatic hydrocarbons. Immunol. Lett. 36:117–123.PubMedCrossRefGoogle Scholar
  21. Leng, M., Sage, E., Fuchs, R. P. P., and Daune, M. P. (1978). Antibodies to DNA modified by the carcinogen N-acetoxy-N-2-acetylaminofluorene. FEBS Lett. 92:207–210.PubMedCrossRefGoogle Scholar
  22. Matsunaga T., Mori T., and Nikaido, O. (1990). Base sequence specificity of a monoclonal antibody binding to (6−4) photoproducts. Mutat. Res. 235:187–194.PubMedCrossRefGoogle Scholar
  23. Matsunaga, T., Hatakeyama, Y., Ohta, M., Mori, T., and Nikaido, O. (1993). Establishment and characterization of a monoclonal antibody recognizing the Dewar isomers of (6−4) photoproducts. Photochem. Photobiol. 57:934–940.PubMedCrossRefGoogle Scholar
  24. Mitchell, D. L., and Nairn, R. S. (1989). The biology of the (6−4) photoproduct. Photochem. Photobiol. 49:805–819.PubMedCrossRefGoogle Scholar
  25. Mitchell, D. L., and Rosenstein, B. S. (1987). The use of specific radioimmunoassays to determine action spectra for the photolysis of (6−4) photoproducts. Photochem. Photobiol. 45:781–786.PubMedCrossRefGoogle Scholar
  26. Mitchell, D.L., Adair, G. M., and Nairn, R. S. (1989). Inhibition of gene expression in a triplet-sensitized, UVB-irradiated plasmid transfected into rodent cells. Photochem. Photobiol. 50:639–646.PubMedCrossRefGoogle Scholar
  27. Motzer, R. J., Reed, E., Perera, F., Tang, D., Shamkhani, H., Poirier, M. C, Tsai, W. Y, Parker, R. J., and Bosl, G. L. (1994). Platinum-DNA adducts assayed in leukocytes of patients with germ cell tumors measured by atomic absorbance spectrometry and enzyme-linked immunosorbant assay. Cancer 73:2843–2852.PubMedCrossRefGoogle Scholar
  28. Nakatsuru, Y, Qin, X. S., Masahito, P., and Ishikawa, T. (1990). Immunological detection of in vivo aflatoxin B1-DNA adduct formation in rats, rainbow trout and coho salmon. Carcinogenesis 11:1523–1526.PubMedCrossRefGoogle Scholar
  29. Newman, M. J., Weston, A., Carver, D. C., Mann, D. L., and Harris, C. C. (1990). Serological characterization of polycyclic aromatic hydrocarbon diolepoxide-DNA adducts using monoclonal antibodies. Carcinogenesis 11:1903–1907.PubMedCrossRefGoogle Scholar
  30. Olivero, O. A., Huitfeldt, H., and Poirier, M. C. (1990). Chromosome site-specific immunohistochemical detection of DNA adducts in N-acetoxy-2-acetylaminofluorene-exposed Chinese hamster ovary cells. Mol. Carcinog. 3:37–43.PubMedCrossRefGoogle Scholar
  31. Ozaki, K., Kato, T., Asamoto, M., Wild. C. P., Montesano, R., Nagao, S., Iwase T, Matsumoto K., and Tsuda, H. (1993). Decreased dimethylnitrosamine-induced 06-and N7-methyldeoxyguanosine levels correlate with development and progression of lesions in rat hepatocarcinogenesis. Jpn. J. Cancer Res. 84:1245–1251.PubMedCrossRefGoogle Scholar
  32. Paleologo, M., van Schooten, F. J., Pavanello, S., Kriek, E., Zordan, M., Clonfero, E., Bezze, C., and Levis, A. G. (1992). Detection of benzo[a]pyrene-diol-epoxide-DNA adducts in white blood cells of psoriatic patients treated with coal tar. Mutat Res. 281:11–16.PubMedCrossRefGoogle Scholar
  33. Paules, R. S., Poirier, M. C, Mass, M. J., Yuspa, S. H., and Kaufmann, D. G. (1985). Quantitation by electron microscopy of the binding of highly specific antibodies to benzo[a]pyrene-DNA adducts. Carcinogenesis 6:193–198.PubMedCrossRefGoogle Scholar
  34. Plescia, O. J., Braun, W., and Palczuk, N. C. (1964). Production of antibodies to denatured deoxyribonucleic acid (DNA). Proc. Natl. Acad. Sci. USA 52:279–285.PubMedCrossRefGoogle Scholar
  35. Poirier, M. C., Dubin, M. A., and Yuspa, S. H. (1979). Formation and removal of specific acetylaminofluorene-DNA adducts in mouse and human cells measured by radioimmunoassay. Cancer Res. 39:1377–1381.PubMedGoogle Scholar
  36. Poirier, M. C., Reed, E., Litterst, C. L., Katz, D., and Gupta-Burt, S. (1992). Persistence of platinum-ammine-DNA adducts in gonads and kidneys of rats and multiple tissues from cancer patients. Cancer Res. 52:149–53.PubMedGoogle Scholar
  37. Reardon, J. T., Nichols, A. F., Keeney, S., Smith, C. A., Taylor, J.-S., Linn, S., and Sancar, A. (1993). Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6–4]T, and T[dewar]T. J. Biol. Chem. 268:21301–21308.PubMedGoogle Scholar
  38. Roberts, D. W., Benson, R. W., Groopman, J. D., Flammang, T. J., Nagle, W. A., Moss, A. J., and Kadlubar, F. F. (1988). Immunochemical quantitation of DNA adducts derived from the human bladder carcinogen 4-amminobiphenyl. Cancer Res. 48:6336–6342.PubMedGoogle Scholar
  39. Roggeband, R., Van den Berg, P. T., Van der Wulp, C. J., and Baan, R. A. (1994). Detection of DNA adducts in basal and non-basal cells of the hamster trachea exposed to benzo(a)pyrene in organ culture. 7. Histochem. Cytochem. 42:1427–1434.CrossRefGoogle Scholar
  40. Rojas, M., Alexandrov, K., van Schooten, F. J., Hillebrand, M., Kriek E., and Bartsch, H. (1994). Validation of a new fluorometric assay for benzo[a]pyrene diolepoxide-DNA adducts in human white blood cells: Comparisons with 32P-postlabeling and ELISA. Carcinogenesis 15:557–560.PubMedCrossRefGoogle Scholar
  41. Rosenstein, B. S. (1984) Photoreactivation of ICR 2A frog cells exposed to solar UV wavelengths. Photochem. Phoiobiol. 40:207–213.CrossRefGoogle Scholar
  42. Rosenstein, B. S. and Mitchell, D. L. (1987). Action spectra for the induction of pyrimdine(6−4)pyrimidone photoproducts and cyclobutane pyrimidine dimers in normal human skin fibroblasts. Photochem. Photobiol. 45:775–781.PubMedCrossRefGoogle Scholar
  43. Santella, R. M., Weston, A., Perera, F. P., Trivers, G. T., Harris, C. C., Young, T. L., Nguyen, D., Lee, B. M., and Poirier, M. C. (1988). Interlaboratory comparison of antisera and immunoassays for benzo[a]pyrene-diol-epoxide-I-modified DNA. Carcinogenesis 9:1265–1269.PubMedCrossRefGoogle Scholar
  44. Santella, R. M., Grinberg-Funes, R. A., Young, T. L., Dickey, C., Singh, V. N., Wang, L. W., and Perera. F. P (1992). Cigarette smoking related polycyclic aromatic hydrocarbon-DNA adducts in peripheral mononuclear cells. Carcinogenesis 13:2041–2045.PubMedCrossRefGoogle Scholar
  45. Santella, R. M., Zhang, Y. J., Chen, C. J., Hsieh, L. L., Lee, C. S., Haghighi, B., Yang, G. Y, Wang, L. W., and Feitelson, M. (1993). Immunohistochemical detection of aflatoxin B1-DNA adducts and hepatitis B virus antigens in hepatocellular carcinoma and nontumorous liver tissue. Environ. Health Perspect. 99:199–202.PubMedGoogle Scholar
  46. Schoket, B., Phillips, D. H., Poirier, M. C., and Vincze, I. (1993). DNA adducts in peripheral blood lymphocytes from aluminum production plant workers determined by 32P-postlabeling and enzyme-linked immunosorbent assay. Environ. Health Perspect. 99:307–309.PubMedGoogle Scholar
  47. Seiler, F., Kirstein, U., Eberle, G., Hochleitner, K., and Rajewsky, M. F. (1993). Quantification of specific DNA O-alkylation products in individual cells by monoclonal antibodies and digital imaging of intensified nuclear fluorescence. Carcinogenesis 14:1907–1913.PubMedCrossRefGoogle Scholar
  48. Strickland, P. T. (1985). Immunoassay of DNA modified by ultraviolet radiation: A review. Environ. Mutagen. 7:599–607.PubMedCrossRefGoogle Scholar
  49. van Schooten, F. J., Hillebrand, M. J., Scherer, E., den Engelse, L., and Kriek, E. (1992). Immunocytochemical visualization of DNA adducts in mouse tissues and human white blood cells following treatment with benzo[a]pyrene or its diol epoxide. A quantitative approach. Carcinogenesis 12:427–433.CrossRefGoogle Scholar
  50. Vink, A. A., Berg, R. J., de Gruijl, F. R., Lohman, P. H., Roza, L., and Baan, R. A. (1993). Detection of thymine dimers in suprabasal and basal cells of chronically UV-B exposed hairless mice. J. Invest. Dermatol. 100:795–799.PubMedCrossRefGoogle Scholar
  51. Wani, A. A., and Arezina, J. (1991). Immunoanalysis of ultraviolet radiation induced DNA damage and repair within specific gene segments of plasmid DNA. Biochim. Biophys. Acta 1090:195–203.PubMedCrossRefGoogle Scholar
  52. West, G. J., West, I. W.-L., and Ward, J. F. (1982). Radioimmunoassay of 7,8-dihydro-8-oxoadenine (8-hydroxyadenine). Int. J. Radiat. Biol. 42:481–490.CrossRefGoogle Scholar
  53. Weston, A., Newman, M. J., Mann, D. L., and Brooks, B. R. (1990). Molecular mechanics and antibody binding in the structural analysis of polycyclic aromatic hydrocarbon-diol-epoxide-DNA adducts. Carcinogenesis 11:859–864.PubMedCrossRefGoogle Scholar
  54. Yang, X.Y, Delohery, T., and Santella, R. M. (1988). Row cytometric analysis of 8-methoxypsoralen-DNA photoadducts in human keratinocytes. Cancer Res. 48:7013–7017.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David L. Mitchell
    • 1
  1. 1.Department of CarcinogenesisThe University of Texas M. D. Anderson Cancer CenterSmithvilleUSA

Personalised recommendations