Agarose Gel Electrophoresis for DNA Damage Analysis

  • Régen Drouin
  • Shuwei Gao
  • Gerald P. Holmquist


Physical and chemical mutagens induce frank breaks in DNA which reduce its single-strand molecular weight. Other nonbreak lesions in the DNA can often be converted into strand breaks by chemical and enzymatic means. Using agarose gel electrophoresis along with various cleavage schemes, the average density of breaks and various lesion classes along mammalian DNA can be determined.


Acridine Orange Acridine Orange Abasic Site Lesion Class Pyrimidone Photoproduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boiteux, S. (1993). Properties and biological functions of the NTH and FPG proteins of Escherichia coli: Two DNA glycosylases that repair oxidative damage in DNA. J. Photochem. Photobiol. 19:87–96.CrossRefGoogle Scholar
  2. Broude, N. E., and Budowsky, E. I. (1971). The reaction of glyoxal with nucleic acid components. III. Kinetics of the reaction with monomers. Biochim. Biophys. Acta 254:380–388.PubMedCrossRefGoogle Scholar
  3. Carmichael, G. G., and McMaster, G. K. (1980). The analysis of nucleic acids in gels using glyoxal and acridine orange. Methods Enzymol. 65:380–391.PubMedCrossRefGoogle Scholar
  4. Doetsch, P. W., and Cunningham, R. P. (1990). The enzymology of apurinic/apyrimidinic endonucleases. Mutat. Res. 236:173–201.PubMedCrossRefGoogle Scholar
  5. Drouin, R., Rodriguez, H., Gao, S., Gebreyes, Z., O’Connor, T. R., Holmquist, G. P., and Akman, S. A. (1996). Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Radical Biol. Med. (in press).Google Scholar
  6. Hamer, D. H., and Thomas, C. A., Jr. (1975). The cleavage of Drosophila melanogaster DNA by restriction endonucleases. Chromosoma 49:243–255.CrossRefGoogle Scholar
  7. Holmquist, G. P. (1988). DNA sequences in G-bands and R-bands, in:Chromosomes and Chromatin (K. W. Adolph, ed.), CRC Press, Boca Raton, FL, pp. 75–121.Google Scholar
  8. Hutton, J. R., and Wetmur, J. G. (1973). Effect of chemical modification on the rate of renaturation of deoxyribonucleic acid. Deaminated and glyoxalated deoxyribonucleic acid. Biochemistry 12:558–563.PubMedCrossRefGoogle Scholar
  9. Johnson, D. (1975). A new method of DNA denaturation mapping. Nucleic Acids Res. 2:2049–2054.PubMedCrossRefGoogle Scholar
  10. Kasten, F. H. (1967). Cytochemical studies with acridine orange and the influence of dye contaminants in the staining of nucleic acids. Int. Rev. Cytol. 21:141–202.PubMedCrossRefGoogle Scholar
  11. McMaster, G. K. and Carmichael, G. G. (1977). Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 74:4835–4838.PubMedCrossRefGoogle Scholar
  12. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  13. Nakaya, K., Takenaka, O., Horinishi, H., and Shibata, K. (1968). Reactions of glyoxal with nucleic acids, nucleotides and their component bases. Biochim. Biophys. Acta 161:23–31.PubMedCrossRefGoogle Scholar
  14. O’Connor, T. R., and Laval, J. (1990). Isolation and structure of a cDNA expressing a mammalian 3-methyl-adenine-DNA glycosylase. EMBO J. 9:3337–3342.PubMedGoogle Scholar
  15. Ogden, R. C., and Adams, D. A. (1987). Electrophoresis in agarose and acrylamide gels. Methods Enzymol. 152:61–87.PubMedCrossRefGoogle Scholar
  16. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991). In vivo mapping of a DNA adduct at nucleotide resolution: Detection of pyrimidine (6−4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88:1374–1378.PubMedCrossRefGoogle Scholar
  17. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992). Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell. Biol. 12:1798–1804.PubMedGoogle Scholar
  18. Rigler, R. (1966). Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange. Acta Physiol. Scand. 67(Suppl. 267):1–122.Google Scholar
  19. Rodriguez, H., Drouin, R., Holmquist, G. P., O’Connor, T. R., Boiteux, S., Laval, J., Doroshow, J. H., and Akman, S. A. (1995). Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated PCR. J. Biol. Chem. 270:17633–17640.PubMedCrossRefGoogle Scholar
  20. Sambrook, J., Fritsch, E. F, and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  21. Schneider, J. E., Price, S., Maidt, L., Gutteridge, J. M. C., and Floyd, R.A. (1990). Methylene blue plus light mediates 8-hydroxy 2′-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res. 18:631–635.PubMedCrossRefGoogle Scholar
  22. Shapiro, R., and Hachmann, J. (1966). The reaction of guanine derivatives with 1,2-dicarbonyl compounds. Biochemistry 5:2799–2807.PubMedCrossRefGoogle Scholar
  23. Shapiro, R., Cohen, B. I., Shiuey, S.-J., and Maurer, H. (1969). On the reaction of guanine with glyoxal, pyruvaldehyde, and kethoxal, and the structure of the acylguanines. A new synthesis of N2-alkylguanines. Biochemistry 8:238–245.PubMedCrossRefGoogle Scholar
  24. Shapiro, R., Cohen, B. I., and Clagett, D. C. (1970). Specific acylation of the guanine residues of ribonucleic acid. J. Biol. Chem. 245:2633–2639.PubMedGoogle Scholar
  25. Tanford, C. (1961). Physical Chemistry of Macromolecules, Wiley, New York.Google Scholar
  26. Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.PubMedCrossRefGoogle Scholar
  27. Wallace, S.S. (1988). AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ. Mol. Mutagen. 12:431–477.PubMedCrossRefGoogle Scholar
  28. Willis, C. K., Willis, D. G., and Holmquist, G. P. (1988). An equation for DNA electrophoretic mobility. Appl. Theor. Electrophor. 1:11–18.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Régen Drouin
    • 1
  • Shuwei Gao
    • 1
  • Gerald P. Holmquist
    • 1
  1. 1.Division of BiologyBeckman Research Institute of the City of HopeDuarteUSA

Personalised recommendations