Advertisement

Single-Strand Conformation Polymorphism Analysis

  • Takao Sekiya

Abstract

Nucleotide sequences of genomic DNA in cells can be altered by a variety of factors. If the alterations do not influence the growth and development of cells, the nucleotide sequences present in germinal cells can be transferred to progenies. If the nucleotide sequence changes influence normal cellular functions, they result in diverse diseases, such as cancers and hereditary diseases in humans.

Keywords

Polymerase Chain Reaction Mobility Shift Polymerase Chain Reaction Buffer Polymerase Chain Reaction Solution Acrylamide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, E. S., Murdaugh, S. E., and Lerman, L. S. (1990). Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gelelectrophoresis and a GC clamp. Genomics 7:463–475.PubMedCrossRefGoogle Scholar
  2. Blin, N., and Stafford, D. W. (1976). A general method for isolation of high-molecular-weight DNA from eukaryotes. Nucleic Acids Res. 3:2303–2308.PubMedCrossRefGoogle Scholar
  3. Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L., and Wallace, R. B. (1983). Detection of sickle cell bs-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80:278–282.PubMedCrossRefGoogle Scholar
  4. Dockhorn-Dworniczak, B., Dworniczak, B., Brömmelkamp, L., Bülles, J., Horst, J., and Böcker, W. W. (1991). Non-isotopic detection of single strand conformation polymorphism (PCR-SSCP); a rapid and sensitive technique in diagnosis of phenylketonuria. Nucleic Acids Res. 19:2500.PubMedCrossRefGoogle Scholar
  5. Hata, A., Robertson, M., Emi, M., and Lalouel, J.-M. (1990). Direct detection and automated sequencing of individual alleles after electrophoretic strand separation: Identification of a common nonsense mutation in exon 9 of the human lipoprotein lipase gene. Nucleic Acids Res. 18:5407–5411.PubMedCrossRefGoogle Scholar
  6. Hayward, G. S. (1972). Gel electrophoretic separation of the complementary strands of bacteriophage DNA. Virology 49:342–344.PubMedCrossRefGoogle Scholar
  7. Makino, R., Yazyu, H., Kishimoto, Y., Sekiya, T., and Hayashi, K. (1992). F-SSCP:A fluorescent polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl. 2:10–13.PubMedCrossRefGoogle Scholar
  8. Mashiyama, S., Sekiya, T., and Hayashi, K. (1990). Screening of multiple DNA samples for detection of sequence changes. Technique 2:304–306.Google Scholar
  9. Maxam, A. M., and Gilbert, W. (1977). A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.PubMedCrossRefGoogle Scholar
  10. Mohabeer, A. J., Hiti, A. L., and Martin, W. J. (1991). Nonradioactive single strand conformation polymorphism (SSCP) using the Pharmacia ‘PhastSystem.’ Nucleic Acids Res. 19:3154.PubMedCrossRefGoogle Scholar
  11. Murakami, Y., Hayashi, K., and Sekiya, T. (1991). Detection of aberrations of the p53 alleles and the gene transcript in human tumor cell lines by single-strand conformation polymorphism analysis. Cancer Res. 51:3356–3361.PubMedGoogle Scholar
  12. Murray, V. (1989). Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 17:8889.PubMedCrossRefGoogle Scholar
  13. Myers, R. M., Larin, Z., and Maniatis, T. (1985a). Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230:1242–1246.PubMedCrossRefGoogle Scholar
  14. Myers, R. M., Lumelsky, N., Lerman, L. S., and Maniatis, T. (1985b). Detection of single base substitutions in total genomic DNA. Nature 313:495–498.PubMedCrossRefGoogle Scholar
  15. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989a). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766–2770.PubMedCrossRefGoogle Scholar
  16. Orita, M., Suzuki, Y, Sekiya, T., and Hayashi, K. (1989b). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879.PubMedCrossRefGoogle Scholar
  17. Sheffield, V. C., Cox, D. R., Lerman, D. R., and Myers, R. M. (1989). Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86:232–236.PubMedCrossRefGoogle Scholar
  18. Suzuki, Y, Sekiya, T., and Hayashi, K. (1991). Allele-specific polymerase chain reaction: A method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal. Biochem. 192:82–84.PubMedCrossRefGoogle Scholar
  19. Winter, E., Yamamoto, R., Almoguera, C., and Perucho, M. A. (1985). Methods to detect and characterize point mutations in transcribed genes: Amplification and overexpression of the mutant c-Ki-ras allele in human tumor cells. Proc. Natl. Acad. Sci. USA 82:7575–7579.PubMedCrossRefGoogle Scholar
  20. Yap, E. P. H., and McGee, J. O. D. (1992). Nonisotopic SSCP and competitive PCR for DNA quantification:p53 in breast cancer cells. Nucleic Acids Res. 20:145.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Takao Sekiya
    • 1
  1. 1.Oncogene DivisionNational Cancer Research InstituteTokyo 104Japan

Personalised recommendations