Skip to main content
  • 309 Accesses

Abstract

Nucleotide sequences of genomic DNA in cells can be altered by a variety of factors. If the alterations do not influence the growth and development of cells, the nucleotide sequences present in germinal cells can be transferred to progenies. If the nucleotide sequence changes influence normal cellular functions, they result in diverse diseases, such as cancers and hereditary diseases in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, E. S., Murdaugh, S. E., and Lerman, L. S. (1990). Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gelelectrophoresis and a GC clamp. Genomics 7:463–475.

    Article  PubMed  CAS  Google Scholar 

  • Blin, N., and Stafford, D. W. (1976). A general method for isolation of high-molecular-weight DNA from eukaryotes. Nucleic Acids Res. 3:2303–2308.

    Article  PubMed  CAS  Google Scholar 

  • Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L., and Wallace, R. B. (1983). Detection of sickle cell bs-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80:278–282.

    Article  PubMed  CAS  Google Scholar 

  • Dockhorn-Dworniczak, B., Dworniczak, B., Brömmelkamp, L., Bülles, J., Horst, J., and Böcker, W. W. (1991). Non-isotopic detection of single strand conformation polymorphism (PCR-SSCP); a rapid and sensitive technique in diagnosis of phenylketonuria. Nucleic Acids Res. 19:2500.

    Article  PubMed  CAS  Google Scholar 

  • Hata, A., Robertson, M., Emi, M., and Lalouel, J.-M. (1990). Direct detection and automated sequencing of individual alleles after electrophoretic strand separation: Identification of a common nonsense mutation in exon 9 of the human lipoprotein lipase gene. Nucleic Acids Res. 18:5407–5411.

    Article  PubMed  CAS  Google Scholar 

  • Hayward, G. S. (1972). Gel electrophoretic separation of the complementary strands of bacteriophage DNA. Virology 49:342–344.

    Article  PubMed  CAS  Google Scholar 

  • Makino, R., Yazyu, H., Kishimoto, Y., Sekiya, T., and Hayashi, K. (1992). F-SSCP:A fluorescent polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl. 2:10–13.

    Article  PubMed  CAS  Google Scholar 

  • Mashiyama, S., Sekiya, T., and Hayashi, K. (1990). Screening of multiple DNA samples for detection of sequence changes. Technique 2:304–306.

    CAS  Google Scholar 

  • Maxam, A. M., and Gilbert, W. (1977). A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.

    Article  PubMed  CAS  Google Scholar 

  • Mohabeer, A. J., Hiti, A. L., and Martin, W. J. (1991). Nonradioactive single strand conformation polymorphism (SSCP) using the Pharmacia ‘PhastSystem.’ Nucleic Acids Res. 19:3154.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, Y., Hayashi, K., and Sekiya, T. (1991). Detection of aberrations of the p53 alleles and the gene transcript in human tumor cell lines by single-strand conformation polymorphism analysis. Cancer Res. 51:3356–3361.

    PubMed  CAS  Google Scholar 

  • Murray, V. (1989). Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 17:8889.

    Article  PubMed  CAS  Google Scholar 

  • Myers, R. M., Larin, Z., and Maniatis, T. (1985a). Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230:1242–1246.

    Article  PubMed  CAS  Google Scholar 

  • Myers, R. M., Lumelsky, N., Lerman, L. S., and Maniatis, T. (1985b). Detection of single base substitutions in total genomic DNA. Nature 313:495–498.

    Article  PubMed  CAS  Google Scholar 

  • Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989a). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766–2770.

    Article  PubMed  CAS  Google Scholar 

  • Orita, M., Suzuki, Y, Sekiya, T., and Hayashi, K. (1989b). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, V. C., Cox, D. R., Lerman, D. R., and Myers, R. M. (1989). Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86:232–236.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, Y, Sekiya, T., and Hayashi, K. (1991). Allele-specific polymerase chain reaction: A method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal. Biochem. 192:82–84.

    Article  PubMed  CAS  Google Scholar 

  • Winter, E., Yamamoto, R., Almoguera, C., and Perucho, M. A. (1985). Methods to detect and characterize point mutations in transcribed genes: Amplification and overexpression of the mutant c-Ki-ras allele in human tumor cells. Proc. Natl. Acad. Sci. USA 82:7575–7579.

    Article  PubMed  CAS  Google Scholar 

  • Yap, E. P. H., and McGee, J. O. D. (1992). Nonisotopic SSCP and competitive PCR for DNA quantification:p53 in breast cancer cells. Nucleic Acids Res. 20:145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sekiya, T. (1996). Single-Strand Conformation Polymorphism Analysis. In: Pfeifer, G.P. (eds) Technologies for Detection of DNA Damage and Mutations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0301-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0301-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0303-7

  • Online ISBN: 978-1-4899-0301-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics