Constant Denaturant Gel Electrophoresis (CDGE) in Mutation Screening

  • Anne-Lise Børresen


There is an increasing need for practical, efficient, and inexpensive ways to explore inherited mutations responsible for genetic diseases, acquired mutations involved in cancer development, and induced mutations in mutational spectrometry. Most of the current methods used for mutation screening are based on PCR, and this has solved the problem of target limitation. Simple and efficient methods such as allele-specific hybridization, allele-specific amplification, ligation, primer extension and artificial introduction of restriction sites, and variants of these methods have been developed for screening large numbers of samples for one particular mutation (for review see Cotton, 1993).


Polymerase Chain Reaction Product TP53 Mutation Mutation Screening TP53 Gene Melting Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T. L., Holm, R., Nesland, J. M., Heimdal, K. R., Ottestad, L., and Børresen, A.-L. (1993). Prognostic significance of TP53 alterations in breast carcinoma. Br. J. Cancer 68:540–548.PubMedCrossRefGoogle Scholar
  2. Andersson, B., Ying, J. H., Lewis, D. E., and Gibbs, R. A. (1993). Rapid characterization of HIV-1 sequence diversity using denaturing gradient gel electrophoresis and direct automated DNA sequence of PCR products. PCR Methods Appl. 2(4):293–300.PubMedCrossRefGoogle Scholar
  3. Børresen, A.-L., Hovig, E., Smith-S—rensen, B., Malkin, D., Lystad, S., Andersen, T. I., Nesland, J. M., Isselbacher, K. J., and Friend, S. H. (1991). Constant dénaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc. Natl. Acad. Sci. USA 88:8405–8409.PubMedCrossRefGoogle Scholar
  4. Børresen, A.-L., Andersen, T. I., Garber, J., Piraux, N. B., Thorlacius, S., Eyfjrd, J., Ottestad, L., Smith-Sørensen, B., Hovig, E., Malkin, D., and Friend, S. H. (1992). Screening for germ line TP53 mutations in breast cancer patients. Cancer Res. 52:3234–3236.PubMedGoogle Scholar
  5. Condie, A., Eeeles, R., Børresen, A.-L., Coles, C., Cooper, C., and Prosser, J. (1993). Detection of point mutations in the p53 gene. Comparison of single-strand conformation polymorphism, constant denaturant gel electrophoresis, and hydroxylamine and osmium tetroxide techniques. Hum. Mutat. 2:58–66.PubMedCrossRefGoogle Scholar
  6. Cornelis, R. S., van Vliet, M., Vos, C. B. J., Cleton-Jansen, A.-M., van de Vrjver, M. J., Peterse, J. L., Meera Khan, P., Børresen, A.-L., Cornelisse, C. J., and Devilee, P (1994). Evidence for a gene on 17p 13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. Cancer 54:4200–4206.Google Scholar
  7. Costes, B., Girodon, E., Ghanem, N., Chassignol, M., Thuong, N.T., Dupret, D., and Goossens, M. (1993). Psoralen-modified oligonucleotide primers improve detection of mutations by denaturing gradient gel electrophoresis and provide an alternative to GC-clamping. Hum. Mol. Genet. 2(4):393–397.PubMedCrossRefGoogle Scholar
  8. Cotton, R. G. H. (1993). Current methods of mutation detection. Mutat. Res. 285:125–144.PubMedCrossRefGoogle Scholar
  9. Dworniczak, B., Kalydjieva, L., Pankoke, S., Aulehla-Scholz, C., Allen, G., and Horst, J. (1992). Analysis of exon 7 of the human phenylalanine hydroxylase gene: A mutation hot spot? Hum. Mutat. 1(2):138–146.PubMedCrossRefGoogle Scholar
  10. Fischer, S. G., and Lerman, L. S. (1983). DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80:1579–1583.PubMedCrossRefGoogle Scholar
  11. Gotoh, O., and Tagashira, Y. (1981). Location of frequently opening regions of natural DNA’s and their relation to functional loci. Biopolymers 20(5):1043–1058.PubMedCrossRefGoogle Scholar
  12. Guldberg, P., Henriksen, K. F., and Guttler, F. (1993). Molecular analysis of phenylketonuria in Denmark:99% of the mutations detected by denaturing gradient gel electrophoresis. Genomics 17(1):141–146.PubMedCrossRefGoogle Scholar
  13. Heimdal, K. R., Lothe, R. A., Lystad, S., Holm, R., Foss, S. D., and Børresen, A.-L. (1993). No germline TP53 mutations detected in familial and bilateral testicular cancer. Genes Chromosomes Cancer 6(2):92–97.PubMedCrossRefGoogle Scholar
  14. Hovig, E., Smith-Sørensen, B., Brøgger, A., and Børresen, A.-L. (1991). Constant dénaturant gel electrophoresis, a modification of denaturing gel electrophoresis, in mutation detection. Mutat. Res. 262:63–71.PubMedCrossRefGoogle Scholar
  15. Hovig, E., Smith-Sørensen, B., Gebhardt, M. C., Ryberg, D., Lothe, R., and Børresen, A.-L. (1992). Alterations in retinoblastoma susceptibility gene exon 21 are not common in human tumours. Genes Chromosomes Cancer 5 (2):97–103.PubMedCrossRefGoogle Scholar
  16. Hovig, E., Smith-Sørensen, B., and Børresen, A.-L. (1994). Detection of mutation by denaturing gradient gel electrophoresis, in:Current Protocols in Human Genetics (N. Dracopoli, D. Moir, D. Smith, J. Haines, C. Morton, B. Korf, C. Seideman, and J. Seidman, eds.) Current Protocols, New York, Chapter 7.5.Google Scholar
  17. Husgafvel-Pursiainen, K., Ridanpää, M., Hackman, P., Antilla, S., Karjalainen, A., Önfelt, A., Børresen, A.-L., and Vainio, H. (1992). Detection of ras gene mutations in human lung cancer: Comparison of two screening assays based on the polymerase chain reaction. Environ. Health Perspect. 98:183–185.PubMedCrossRefGoogle Scholar
  18. Khrapko, K., Hanekamp, J. S., Thilly, W. G., Belenki, A., Foret, F., and Karger, B. L. (1994). Constant denaturant capillary electrophoresis (CDCE):A high resolution approach to mutational analysis. Nucleic Acids Res. 22:364–372.PubMedCrossRefGoogle Scholar
  19. Lerman, L. S., and Silverstein, K. (1987). Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 155:482–501.PubMedCrossRefGoogle Scholar
  20. Mclntyre, J. R., Smith-Sørensen, B., Friend, S. H., Kassell, J., Børresen, A.-L., Yu Xin Yan, Russo, C., Sato, J., Barbier, N., Miser, J., Malkin, D., and Gebhardt, M. C. (1994). Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J. Clin. Oncol. 12:925–930.Google Scholar
  21. Malkin, D., Jolly, K. W., Barbier-Piraux, N., Look, T., Friend, S. H., Gebbhardt, M. C., Andersen, T. I., Børresen, A.-L., Li, F. P., Garber, J., and Strong, L. C. (1992). Germline mutations in the p53 tumor suppressor gene in children and young adults with second malignant neoplasms. N. Eng. J. Med. 20:1309–1315.CrossRefGoogle Scholar
  22. Peng, H. Q., Malkin, D., Bailey, D., Gallie, B. L., Bulbul, M., Jewet, M., Buchanan, J., and Goss, P. E. (1993). Mutations of the p53 genes do not occur in testis cancer. Cancer Res. 53:3574–3578.PubMedGoogle Scholar
  23. Poland, D. (1974). Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations. Biopolymers 13:1859–1871.PubMedCrossRefGoogle Scholar
  24. Ridanpää, M., and Husgafvel-Pursiainen, K. (1993). Denaturing gradient gel electrophoresis (DGGE) assay for K-ras and N-ras genes: Detection of K-ras point mutations in human lung tumour DNA. Hum. Mol. Genet. 2(6):639–644.PubMedCrossRefGoogle Scholar
  25. Ryberg, D., Kure, E., Lystad, S., Skaug, V., Stangeland, L., Mercy, L, Børresen, A.-L., and Haugen, A. (1994). Mutations in lung tumors. Relationship to putative susceptibility markers for cancer. Cancer Res. 54:1551–1555.PubMedGoogle Scholar
  26. Seruca, R., David, L., Holm, R., Nesland, J. M., Fangan, B. M., Castedo, S., Sobrinho-Simoes, M., and Børresen, A.-L. (1992). P53 mutations in gastric carcinomas. Br. J. Cancer 65(5):708–710.PubMedCrossRefGoogle Scholar
  27. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989). Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Nad. Acad. Sci. USA 86:232–236.CrossRefGoogle Scholar
  28. Smith-Sørensen, B., Hovig, E., Andersson, B., and Børresen, A.-L. (1992). Screening for base mutations in human HPRT cDNA using the polymerase chain reaction (PCR) in combination with constant dénaturant gel electrophoresis (CDGE). Mutat. Res. 269:41–53.PubMedCrossRefGoogle Scholar
  29. Smith-Sørensen, B., Gebhardt, M. C., Kloen, P., Aguilar, F., Friend, S. H., and Børresen, A.-L. (1993). Screening for TP53 mutations in osteosarcomas using the polymerase chain reaction (PCR) in combination with constant denaturant gel electrophoresis (CDGE). Hum. Mutat. 2:274–285.PubMedCrossRefGoogle Scholar
  30. Thorlacius, S., Børresen, A.-L., and Eyfjörd, J. (1993). Somatic p53 mutations in human breast carcinomas in an Icelandic population, a prognostic factor. Cancer Res. 53:1637–1641.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Anne-Lise Børresen
    • 1
  1. 1.Department of Genetics, Institute for Cancer ResearchThe Norwegian Radium HospitalOsloNorway

Personalised recommendations