The Cytokinesis-Block Micronucleus Technique

  • Michael F. Fenech

Abstract

The observation that chromosome damage can be caused by exposure to ionizing radiation or carcinogenic chemicals was among the first reliable evidence that physical and chemical agents can cause major alterations to the genetic material of eukaryotic cells (Evans, 1977). Although our understanding of chromosome structure is incomplete, evidence suggests that chromosome abnormalities are a direct consequence and manifestation of damage at the DNA level; for example, chromosome breaks may result from unrepaired double-strand breaks in DNA and chromosome rearrangements may result from misrepair of strand breaks in DNA (Savage, 1993). It is also recognized that chromosome loss and malsegregation of chromosomes (nondisjunction) are an important event in cancer and aging and that they are probably caused by defects in the spindle, centromere or as a consequence of undercondensation of chromosome structure before metaphase (Evans, 1990; Dellarco et al., 1985; Guttenbach and Schmid, 1994).

Keywords

Binucleated Cell Micronucleus Assay Acentric Fragment Main Nucleus Nuclear Division Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ban, S., Cologne, J. B., Fujita, S., and Awa, A. A. (1993). Radiosensitivity of atomic bomb survivors as determined with a micronucleus assay. Radiat. Res. 134:170–178.PubMedCrossRefGoogle Scholar
  2. Carter, S. B. (1967). Effects of cytochalasins on mammalian cells. Nature 213:261–264.PubMedCrossRefGoogle Scholar
  3. Castelain, P., Van Hummelen, P., Deleneer, A., and Kirsch-Volders, M. (1993). Automated detection of cytochalasin-B blocked binucleated lymphocytes for scoring micronuclei. Mutagenesis 8(4):285–293.PubMedCrossRefGoogle Scholar
  4. Dellarco, V. L., Mavournin, K. H., and Tice, R. R. (1985). Aneuploidy and health risk assessment: Current status and future directions. Environ. Mutagen. 7:405–424.PubMedCrossRefGoogle Scholar
  5. Earnshaw, W. C., and Migeon, B. R. (1985). Three related centromere proteins are absent from the inactive centromere of a stable dicentric chromosome. Chromosoma 92:290–296.PubMedCrossRefGoogle Scholar
  6. Eastmond, D. A., and Tucker, J. D. (1989). Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ. Mol. Mutagen. 13(1):34–43.PubMedCrossRefGoogle Scholar
  7. Evans, H. J. (1977). Molecular mechanisms in the induction of chromosome aberrations, in:Progress in Genetic Toxicology (D. Scott, B. A. Bridges, and F. H. Sobels, eds.), Elsevier/North-Holland, Amsterdam, pp. 57–74.Google Scholar
  8. Evans, H. J. (1990). Cytogenetics: Overview. Prog. Clin. Biol. Res. 340B:301–323.PubMedGoogle Scholar
  9. Farooqi, Z., Darroudi, F., and Natarajan, A. T. (1993). Use of fluorescence in situ hybridisation for the detection of aneugens in cytokinesis-blocked mouse splenocytes. Mutagenesis 8:329–334.PubMedCrossRefGoogle Scholar
  10. Fenech, M. (1993). The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mutat. Res. 285:35–44.PubMedCrossRefGoogle Scholar
  11. Fenech, M., and Morley, A. A. (1985a). Solutions to the kinetic problem in the micronucleus assay. Cytobios 43:233–246.PubMedGoogle Scholar
  12. Fenech, M., and Morley, A. A. (1985b). Measurement of micronuclei in lymphocytes. Mutat. Res. 147:29–36.PubMedCrossRefGoogle Scholar
  13. Fenech, M., and Morley, A. A. (1986). Cytokinesis-block micronucleus method in human lymphocytes: Effect of in vivo ageing and low-dose x-irradiation. Mutat. Res. 161:193–198.PubMedCrossRefGoogle Scholar
  14. Fenech, M., and Morley, A. A. (1989). Kinetochore detection in micronuclei: An alternative method for measuring chromosome loss. Mutagenesis 4(2):98–104.PubMedCrossRefGoogle Scholar
  15. Fenech, M., and Neville, S. (1991). Conversion of excision-repairable DNA lesions to micronuclei within one cell cycle in human lymphocytes. Environ. Mol. Mutagen. 19(1):27–36.CrossRefGoogle Scholar
  16. Fenech, M., and Rinaldi, J. (1994). The relationship between micronuclei in human lymphocytes and plasma levels of vitamin C, vitamin E, vitamin B12 and folic acid. Carcinogenesis 15(7):1405–1411.PubMedCrossRefGoogle Scholar
  17. Fenech, M., and Rinaldi, J. (1995). A comparison of lymphocyte micronuclei and plasma micronutrients in vegetarians and non-vegetarians. Carcinogenesis 16(2):223–230.PubMedCrossRefGoogle Scholar
  18. Fenech, M. F., Dunaiski, V., Osborne, Y., and Morley, A. A. (1991). The cytokinesis-block micronucleus assay as a biological dosimeter in spleen and peripheral blood lymphocytes in the mouse following acute whole body irradiation. Mutat. Res. 263:119–126.PubMedCrossRefGoogle Scholar
  19. Fenech, M., Neville, S., and Rinaldi, J. (1994). Sex is an important variable affecting spontaneous micronucleus frequency in cytokinesis-blocked lymphocytes. Mutat. Res. 313:203–207.PubMedCrossRefGoogle Scholar
  20. Fisher, D. E. (1994). Apoptosis in cancer therapy: Crossing the threshold. Cell 78:539–542.PubMedCrossRefGoogle Scholar
  21. Guttenbach, M., and Schmid, M. (1994). Exclusion of specific human chromosomes into micronuclei by 5-aza-cytidine treatment of lymphocyte cultures. Exp. Cell Res. 211:127–132.PubMedCrossRefGoogle Scholar
  22. Hando, J. C, Nath, J., and Tucker, J. D. (1994). Sex chromosomes, micronuclei and aging in women. Chromosoma 103:186–192.PubMedCrossRefGoogle Scholar
  23. He, S., and Baker, R. S. U. (1989). Initiating carcinogen, triethylenemelamine, induces micronuclei in skin target cells. Environ. Mol. Mutagen. 14(1):1–5.PubMedCrossRefGoogle Scholar
  24. Heddle, J. A. (1973). A rapid in vivo test for chromosome damage. Mutat. Res. 18:187–192.PubMedCrossRefGoogle Scholar
  25. Heddle, J. A., Bouch, A., Khan, M. A., and Gingerich, J. D. (1990). Concurrent detection of gene mutations and chromosomal aberrations induced in vivo in somatic cells. Mutagenesis 5(2):179–184.PubMedCrossRefGoogle Scholar
  26. Huber, R., Braselmann, H., and Bauchinger, M. (1989). Screening for interindividual differences in radiosensitivity by means of the micronucleus assay in human lymphocytes. Radiat. Environ. Biophys. 28:113–120.PubMedCrossRefGoogle Scholar
  27. Littlefield, G. L., Sayer, A. M., and Frome, E. L. (1989). Comparison of dose-response parameters for radiation-induced acentric fragments and micronuclei observed in cytokinesis-arrested lymphocytes. Mutagenesis 4:265–270.PubMedCrossRefGoogle Scholar
  28. Masunaga, S., Ono, K., and Abe, M. (1991). A method for the selective measurement of the radiosensitivity of quiescent cells in solid tumours—Combination of immunofluorescence staining to BrdU and micronucleus assay. Radiat. Res. 125:243–247.PubMedCrossRefGoogle Scholar
  29. Moroi, Y, Hartman, A. L., Nakane, P.K., and Tan, E. M. (1981). Distribution of kinetochore antigen in mammalian cell nuclei. J. Cell Biol. 90:254–259.PubMedCrossRefGoogle Scholar
  30. Natarajan, A. T., and Obe, G. (1982). Mutagenicity testing with cultured mammalian cells: Cytogenetic assays, in:Mutagenicity: New Horizons in Genetic Toxicology (J. A. Heddle, ed.), Academic Press, New York, pp. 171–213.Google Scholar
  31. Odagiri, Y, Takemoto, K., and Fenech, M. (1994). Micronucleus induction in cytokinesis-blocked mouse bone-marrow cells in vitro following in vivo exposure to X-irradiation and cyclophosphamide. Environ. Mol. Mutagen. 24:61–67.PubMedCrossRefGoogle Scholar
  32. Parry, E. M., Henderson, L., and Mackay, J. M. (1995). Guidelines for testing of chemicals. Procedures for the detection of chemically induced aneuploidy: Recommendations of a UK Environmental Mutagen Society working group. Mutagenesis 10(1):1–14.PubMedCrossRefGoogle Scholar
  33. Pike, B. L., and Robinson, W. A. (1970). Human bone-marrow colony growth in agar gel. J. Clin. Physiol. 76:77–84.CrossRefGoogle Scholar
  34. Ramalho, A., Sunervic, I., and Natarajan, A. T. (1988). Use of the frequencies of micronuclei as quantitative indicators of X-ray-induced chromosomal aberrations in human peripheral blood lymphocytes: Comparison of two methods. Mutat. Res. 207:141–146.PubMedCrossRefGoogle Scholar
  35. Savage, J. R. K. (1993). Update on target theory as applied to chromosomal aberrations. Environ. Mol. Mutagen. 22:198–207.PubMedCrossRefGoogle Scholar
  36. Schmid, W. (1975). The micronucleus test. Mutat. Res. 31:9–15.PubMedCrossRefGoogle Scholar
  37. Scopsi, L., and Larsson, L. I. (1986). Increased sensitivity in peroxidase immunochemistry. A comparative study of a number of peroxidase visualisation methods employing a model system. Histochemistry 84:221–230.PubMedCrossRefGoogle Scholar
  38. Shibamoto, Y., Streffer, C, Fuhrmann, C., and Budach, V. (1991). Tumour radiosensitivity prediction by the cytokinesis-block micronucleus assay. Radiat. Res. 128:293–300.PubMedCrossRefGoogle Scholar
  39. Straus, W. (1982). Imidazole increases the sensitivity of the cytochemical reaction for peroxidase with diaminobenzidine at neutral pH. J. Histochem. Cytochem. 30:491–493.PubMedCrossRefGoogle Scholar
  40. Surralles, J., Carbonell, E., Marcos, R., Degrassi, F., Antoccia, A., and Tanzarella, C. (1992). A collaborative study on the improvement of the micronucleus test in cultured human lymphocytes. Mutagenesis 7(6):407–410.PubMedCrossRefGoogle Scholar
  41. Tates, A. N., van Welie, M. T., and Ploem, J. S. (1990). The present state of the automated micronucleus test for lymphocytes. Int. J. Radiat. Biol. 58:813–825.PubMedCrossRefGoogle Scholar
  42. Unger, C, Kress, S., Buchmann, A., and Schwarz, M. (1994). Gamma-irradiation-induced micronuclei from mouse hepatoma cells accumulate high levels of the tumour suppressor protein p53. Cancer Res. 54(14):3651–3655.PubMedGoogle Scholar
  43. Vig, B. K., and Swearngin, S. E. (1986). Sequence of centromere separation: Kinetochore formation in induced laggards and micronuclei. Mutagenesis 1:464–465.CrossRefGoogle Scholar
  44. White, N. H., de Matteis, F., Davies, A., Smith, L. L., Crofton-Sleigh, C, Venitt, S., Hewer, A., and Phillips, D. H. (1992). Genotoxic potential of tamoxifen and analogues in female Fischer F344/n rats, DBA/2 and C57BL/6 mice and in human MCL-5 cells. Carcinogenesis 13(12):2197–2203.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael F. Fenech
    • 1
  1. 1.CSIRO Division of Human NutritionAdelaideAustralia

Personalised recommendations