Mutation Analysis by Denaturing Gradient Gel Electrophoresis (DGGE)

  • Riccardo Fodde
  • Monique Losekoot

Abstract

The identification and characterization of single nucleotide variations in DNA still represents a common technical obstacle in the detection of DNA damage as well as in the genetic analysis of inherited disorders. The introduction of the polymerase chain reaction (PCR) (Saiki et al., 1988) has greatly facilitated this technical problem:the in vitro production of large amounts of the DNA target makes the application of tedious molecular cloning steps obsolete, and allows the direct determination of the nucleotide sequence of the amplified fragment. However, when approaching the analysis of a large DNA segment, it is often desirable to first perform a screening of overlapping PCR-amplified fragments to establish where the putative nucleotide variant is located. To this aim, several protocols are available based on some physical features of DNA or on the activity of different chemical agents or enzymes capable of recognizing mismatches in double-stranded molecules. Of these protocols, denaturing gradient gel electrophoresis (DGGE) allows the identification of point mutations which alter the melting behavior of the DNA fragment to be analyzed (Fischer and Lerman, 1979, 1983; Myers et al., 1985a).

Keywords

Adenomatous Polyposis Coli Polymerase Chain Reaction Primer Melting Behavior Single Base Substitution Denaturant Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, E. S., Murdaugh, S. E., and Lennan, L. S. (1990). Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gel electrophoresis and a GC clamp. Genomics 7:463–475.PubMedCrossRefGoogle Scholar
  2. Aly, A. M., Higuchi, M., Kasper, C. K., Kazazian, H. H., Jr., Antonarakis, S. E., and Hoyer, L. W. (1992). Haemophilia A due to mutations that create new N-glycosylation sites. Proc. Natl Acad. Sci. USA 89:4933–4937.PubMedCrossRefGoogle Scholar
  3. Antonarakis, S. E., and Kazazian, H. H., Jr. (1988). The molecular basis of haemophilia A in man. Trends Genet. 4:233–237.PubMedCrossRefGoogle Scholar
  4. Attree, O., Vidaud, D., Vidaud, M., Amselem, S., Lavergne, J. M., and Goossens, M. (1989). Mutations in the catalytic domain of human coagulation factor IX:Rapid characterization by direct genomic sequencing of DNA fragments displaying an altered melting behavior. Genomics 4:266–272.PubMedCrossRefGoogle Scholar
  5. Borresen, A. L., Hovig, E., and Brogger, A. (1988). Detection of base mutations in genomic DNA using denaturing gradient gel electrophoresis (DGGE) followed by transfer and hybridization with gene-specific probes. Mutat. Res. 202:77–83.PubMedCrossRefGoogle Scholar
  6. Burmeister, M., diSibio, G., Cox, D. R., and Myers, R. M. (1991). Identification of polymorphisms by genomic denaturing gradient gel electrophoresis: Application to the proximal region of human chromosome 21. Nucleic Acids Res. 19:1475–1481.PubMedCrossRefGoogle Scholar
  7. Cai, S. P., and Kan, Y. W. (1990). Identification of the multiple β-thalassemia mutations by denaturing gradient gel electrophoresis. J. Clin. Invest. 85:550–553.PubMedCrossRefGoogle Scholar
  8. Cariello, N. F., and Thilly, W. G. (1986). Use of denaturing gradient gel electrophoresis to determine mutational spectra in human cells, in:Mechanisms of DNA Damage and Repair: Implications for Carcinogenesis and Risk Assessment (M. G. Simic, L. Grossmann, and A. C. Upton, eds.), Plenum Press, New York, pp. 439–452.CrossRefGoogle Scholar
  9. Cariello, N. R., Keohavong, P., Kat, A. G., and Thilly, W. G. (1990). Molecular analysis of complex human cell populations: Mutational spectra of MNNG and ICR-1191. Mutat. Res. 231:165–176.PubMedCrossRefGoogle Scholar
  10. Cariello, N. F., Swenberg, J. A., De Bellis, A., and Skopek, T. R. (1991). Analysis of mutations using PCR and denaturing gradient gel electrophoresis. Environ. Mol. Mutagen. 18:249–254.PubMedCrossRefGoogle Scholar
  11. Chen, J., and Thilly, W. G. (1994). Mutational spectrum of chromium (VI) in human cells. Mutat. Res. 323:21–27.PubMedCrossRefGoogle Scholar
  12. Costes, B., Girodon, E., Ghanem, N., Chassignol, M., Thuong, N. T., Dupret, D., and Goossens, M. (1993). Psoralen-modified oligonucleotide primers improve detection of mutations by denaturing gradient gel electrophoresis and provide an alternative to GC-clamping. Hum. Mol. Genet. 2:393–397.PubMedCrossRefGoogle Scholar
  13. Curtis, D., Clark, S. H., Chovnick, A., and Bender, W. (1989). Molecular analysis of recombination events in Drosophila. Genetics 122:653–661.PubMedGoogle Scholar
  14. Doerig, R. E., Suter, B., Gray, M., and Kubli, E. (1988). Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gene. EMBO J. 7:2579–2584.PubMedGoogle Scholar
  15. Fearon, E. R., and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell 61:759–767.PubMedCrossRefGoogle Scholar
  16. Ferec, C., Audrezet, M. P., Mercier, B., Guillermit, H., Moullier, P., Quere, I., and Verlingue, C. (1992). Detection of over 98% cystic fibrosis mutations in a Celtic population. Nature Genet. 1:188–191.PubMedCrossRefGoogle Scholar
  17. Fischer, S. G., and Lerman, L. S. (1979). Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16:191–200.PubMedCrossRefGoogle Scholar
  18. Fischer, S. G., and Lerman, L. S. (1983). DNA fragments differing by a single base-pair substitution are separated in denaturing gradient gels: Correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80:1579–1583.PubMedCrossRefGoogle Scholar
  19. Fodde, R., van der Luijt, R., Wijnen, J. T., Tops, C., van der Klift, H., van Leeuwen-Cornelisse, J., Griffioen, G., Vasen, H., and Meera Khan, P. (1992). Eight novel inactivating germ line mutations identified by denaturing gradient gel electrophoresis. Genomics 13:1162–1168.PubMedCrossRefGoogle Scholar
  20. Gray, M., Charpentier, A., Walsh, K., Wu, P., and Bender, W. (1991). Mapping point mutations in the Drosophila rosy locus using denaturing gradient gel blots. Genetics 127:139–149.PubMedGoogle Scholar
  21. Harteveld, C. L., Heister, J. G. A. M., Giordano, P. C., Losekoot, M., and Bernini, L. F. (1996). Rapid detection of point mutations and polymorphisms of the α-globin genes by DGGE and SSCA. Hum. Mutat. 7:114–122.PubMedCrossRefGoogle Scholar
  22. Higuchi, M., Kazazian, H. H., Jr., Kasch, L., Warren, T. C., McGinnis, M. J., Phillips, J. A., III, Kasper, C., Janco, R., and Antonarakis, S. (1991a). Molecular characterization of severe haemophilia A suggests that about half the mutations are not within the coding regions and splice junctions of the factor VIII gene. Proc. Natl. Acad. Sci. USA 88:7405–7409.PubMedCrossRefGoogle Scholar
  23. Higuchi, M., Antonarakis, S. E., Kasch, L., Oldenburg, J., Economou-Petersen, E., Olek, K., Arai, M., Inaba, H., and Kazazian, H. H., Jr. (1991b). Molecular characterization of mild-to-moderate haemophilia A:Detection of the mutation in 25 of 29 patients by denaturing gradient gel electrophoresis. Proc. Natl. Acad. Sci. USA 88:8307–8311.PubMedCrossRefGoogle Scholar
  24. Hofker, M. H., Skraastad, M. I., Bergen, A. A. B., Wapenaar, M. C., Bakker, E., Millington-Ward, A., van Ommen, G. J. B., and Pearson, P. L. (1986). The X chromosome shows less genetic variation at restriction sites than the autosomes. Am. J. Hum. Genet. 39:438–451.PubMedGoogle Scholar
  25. Keohavong, P., and Thilly, W. G. (1992). Mutational spectrometry: A general approach for hot-spot point mutations in selectable genes. Proc. Natl. Acad. Sci. USA 89:4623–4627.PubMedCrossRefGoogle Scholar
  26. Kogan, S., and Gitschier, J. (1990). Mutations and polymorphisms in the factor VIII gene discovered by denaturing gradient gel electrophoresis. Proc. Natl. Acad. Sci. USA 87:2092–2096.PubMedCrossRefGoogle Scholar
  27. Lerman, L. S., and Silverstein, K. (1987). Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 155:482–501.PubMedCrossRefGoogle Scholar
  28. Losekoot, M., Fodde, R., Harteveld, C. L., van Heeren, H., Giordano, P. C., and Bernini, L. F (1990). Denaturing gradient gel electrophoresis and direct sequencing of PCR amplified genomic DNA:A rapid and reliable diagnostic approach to β-thalassemia. Br. J. Haematol. 76:269–214.PubMedCrossRefGoogle Scholar
  29. Losekoot, M., Fodde, R., Harteveld, C. L., van Heeren, H., Giordano, P. C., Went, L. N., and Bernini, L. F. (1991). Homozygous β+-thalassaemia owing to a mutation in the cleavage-polyadenylation sequence of the human β-globin gene. J. Med. Genet. 28:252–255.PubMedCrossRefGoogle Scholar
  30. Losekoot, M., van Heeren, H., Schipper, J. J., Giordano, P. C., Bernini, L. F., and Fodde, R. (1992). Rapid detection of a highly polymorphic fragment in the β-globin gene by denaturing gradient gel electrophoresis of PCR amplified material. J. Med. Genet. 29:574–577.PubMedCrossRefGoogle Scholar
  31. Moyret, C., Theillet, C., Puig, P. L., Moles, J. P., Thomas, G., and Hamelin, R. (1994). Relative efficiency of denaturing gradient gel electrophoresis and single strand conformation polymorphism in the detection of mutations in exons 5 to 8 of the p53 gene. Oncogene 9:1739–1743.PubMedGoogle Scholar
  32. Myers, R. M., Lumelski, N., Lerman, L. S., and Maniatis, T. (1985a). Detection of single base substitutions in total genomic DNA. Nature 313:495–498.PubMedCrossRefGoogle Scholar
  33. Myers, R.M., Fischer, S. G., Lerman, L. S., and Maniatis, T. (1985b). Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13:3131–3145.PubMedCrossRefGoogle Scholar
  34. Myers, R. M., Fischer, S. G., Maniatis, T., and Lerman, L. S. (1985c). Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13:3111–3130.PubMedCrossRefGoogle Scholar
  35. Myers, R. M., Maniatis, T., and Lerman, L. S. (1987). Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501–527.PubMedCrossRefGoogle Scholar
  36. Oiler, A. R., and Thilly, W. G. (1992). Mutational spectra in human B-cells. Spontaneous, oxygen and hydrogen peroxide-induced mutations at the hprt gene. J. Mol. Biol. 228:813–826.CrossRefGoogle Scholar
  37. Olschwang, S., Laurent-Puig, P., Groden, J., White, R., and Thomas, G. (1993). Germ-line mutations in the first 14 exons of the adenomatous polyposis coli (APC) gene. Am. J. Hum. Genet. 52:273–279.PubMedGoogle Scholar
  38. Pellegata, N. S., Losekoot, M., Fodde, R., Pugliese, V., Saccomanno, S., Renault, B., Bernini, L. F., and Ranzani, G. N. (1992). Detection of k-ras mutations by denaturing gradient gel electrophoresis (DGGE):A study on pancreatic cancer. Anticancer Res. 12:1731–1736.PubMedGoogle Scholar
  39. Renault, B., van den Broek, M., Fodde, R., Wrjnen, J., Pellegata, N. S., Amadori, D., Meera Khan, P., and Ranzani, G. N. (1993). Base transitions are the most frequent genetic changes at p53 in gastric cancer. Cancer Res. 53:2614–2617.PubMedGoogle Scholar
  40. Rosatelli, M.C, Dozy, A., Faa, V., Meloni, A., Sardu, R., Saba, L., Kan, Y. W., and Cao, A. (1992). Molecular characterization of β-thalassemia in the Sardinian population. Am. J. Hum. Genet. 50:422–426.PubMedGoogle Scholar
  41. Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1986). Analysis of enzymatically amplified β-globin and HLA-DQa DNA with allele-specific oligonucleotide probes. Nature 324:163–166.PubMedCrossRefGoogle Scholar
  42. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988). Primer directed amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.PubMedCrossRefGoogle Scholar
  43. Satoh, C., Takahashi, N., Asakawa, J., Hiyama, K., and Kodaira, M. (1993). Variations among Japanese of the factor IX gene (F9) detected by PCR-denaturing gradient gel electrophoresis. Am. J. Hum. Genet. 52:167–175.PubMedGoogle Scholar
  44. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989). Attachment of a 40 base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single base changes. Proc. Natl. Acad. Sci. USA 86:232–236.PubMedCrossRefGoogle Scholar
  45. Sheffield, V. C., Beck, J. S., Kwitek, A. E., Sandstrom, D. W., and Stone, E. M. (1993). The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16:325–332.PubMedCrossRefGoogle Scholar
  46. Takahashi, N., Hiyama, K., Kodaira, M., and Satoh, C. (1990). An improved method for the detection of genetic variations in DNA with denaturing gradient gel electrophoresis. Mut. Res. 234:61–70.CrossRefGoogle Scholar
  47. Takahashi, N., Hiyama, K., Kodaira, M., and Satoh. C (1991). The length polymorphism in the 5′ flanking region of the human β-globin gene with denaturing gradient gel electrophoresis in a Japanese population. Hum. Genet. 87:219–220.PubMedCrossRefGoogle Scholar
  48. Theophilus, B. D. M., Latham, T., Grabowski, G. A., and Smith, F. I. (1989). Comparison of RNase A, chemical cleavage, and GC-clamped denaturing gradient gel electrophoresis for the detection of mutations in exon 9 of the human acid β-glucosidase gene. Nucl. Acids. Res. 17:7707–7722.PubMedCrossRefGoogle Scholar
  49. Thilly, W. G. (1985). Potential use of denaturing gradient gel electrophoresis in obtaining mutational spectra from human cells, in:Carcinogenesis: The Role of Chemicals and Radiation in the Etiology of Cancer, Volume 10 (E. Huberman and S. H. Barr, eds.), Raven Press, New York, pp. 511–528.Google Scholar
  50. Top, B. (1992). A simple method to attach a universal 50-bp GC-clamp to PCR fragments used for mutation analysis by DGGE. PCR Methods Appl. 2:83–85.PubMedCrossRefGoogle Scholar
  51. Traystman, M. D., Higuchi, M., Kasper, C. K., Antonarakis, S. E., and Kazazian, H. H., Jr. (1990). Use of denaturing gradient gel electrophoresis to detect point mutations in the factor VIII gene. Genomics 6:293–301.PubMedCrossRefGoogle Scholar
  52. van den Broek, M. H., Renault, B., Fodde, R., Verspaget, H., Griffioen, G., and Meera Khan, P. (1993). Sites and types of p53 mutations in an unselected series of colorectal cancers in The Netherlands. Anticancer Res. 13:587–592.Google Scholar
  53. Wijnen, J., Vasen, H., Meera Khan, P., Menko, F. H., van der Klift, H., van Leeuwen, C., van den Broek, M., van Leeuwen-Cornelisse, I., Nagengast, F., Meijers-Heijboer, A., Lindhout, D., Griffioen, G., Cats, A., Kleibeuker, J., Varesco, L., Bertario, L., Bisgaard, M. L., Mohr J., and Fodde, R. (1995). Seven new mutations in hMSH2, an HNPCC gene identified by denaturing gradient gel electrophoresis (DGGE). Am. J. Hum. Genet. 56:1060–1066.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Riccardo Fodde
    • 1
  • Monique Losekoot
    • 1
  1. 1.MGC-Department of Human GeneticsLeiden UniversityLeidenThe Netherlands

Personalised recommendations