Heteroduplex Analysis

  • Damjan Glavač
  • Michael Dean


Many of the current methods used for mutation detection in genomic DNA rely on conformational changes in either double- or single-stranded DNA structure. Conformations can be distinguished by electrophoresis due to their different response to an electrical field. The rate of migration or mobility of DNA molecules through the electrical field depends not only on the shape of molecules, but also on the ionic strength, viscosity, and temperature of the medium in which the molecules are moving. For example, the single-stranded conformation polymorphism (SSCP) technique (Orita et al., 1989) depends on the altered mobility of single-stranded molecules and is a powerful diagnostic tool for detecting sequence variations.


Cystic Fibrosis Familial Adenomatous Polyposis Adenomatous Polyposis Coli Dystrophin Gene Hereditary Haemorrhagic Telangiectasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artlich, A., Horn, M., Lorenz, B., Bhattacharyya, S., and Gal, S. (1992). Recurrent 3-bp deletion at codon 255/256 of the rhodopsin gene in a German pedigree with autosomal dominant retinitis pigmentosa. Am. J. Hum. Genet. 50:876–878.PubMedGoogle Scholar
  2. Bhattacharyya, A., and Lilley, D. M. J. (1989). The contrasting structures of mismatched DNA sequences containing looped-out (bulges) and multiple mismatches (bubbles). Nucleic Acids Res. 17:6821–6840.PubMedCrossRefGoogle Scholar
  3. Bidwell, J. L., Clay, T. M., Wood, N. A. P., Pursall, M. P., Martin, A. K., Bradley, B. A., and Hui, K. M. (1993). Rapid HLA-DR-Dw and DP matching by PCR fingerprinting and related DNA heteroduplex technologies, in:Handbook of HLA Typing Techniques (K. M. Hui and J. L. Bidwell, eds.), CRC Press, Boca Raton, pp. 99–116.Google Scholar
  4. Blum, H., Beier, H., and Gross, H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99.CrossRefGoogle Scholar
  5. Bourn, D., Carter, S. A., Mason, S., Evans, D. G. R., and Stachan, T. (1994). Germline mutations in the neurofi-bromatosis type 2 tumour suppressor gene. Hum. Mol. Genet. 3:813–816.PubMedCrossRefGoogle Scholar
  6. Carrington, M., White, M. B., Dean, M., Mann, D., and Ward, F. E. (1992). The use of DNA heteroduplex patterns to map recombination within HLA class II region. Hum. Immunol. 33:114–121.PubMedCrossRefGoogle Scholar
  7. Chevalier-Porst, F., Mathieu, M., and Bozon, D. (1993). Identification of three rare frameshift mutations in exon 13 of the cystic fibrosis gene:1918delGC, 2118del4, and 2372del8. Hum. Mol. Genet. 2:1071–1072.PubMedCrossRefGoogle Scholar
  8. Claustres, M., Laussel, M., Desgeorges, M., Giansily, M., Culard, J.-F, Razakatsara, G., and Démaille, J. (1993). Analysis of the 27 exons and flanking regions of the cystic fibrosis gene:40 different mutations account for 91.2% of the mutant alleles in Southern France. Hum. Mol. Genet. 2:1209–1213.PubMedCrossRefGoogle Scholar
  9. Cotton, R. G. H., Rodrigues, N. R., and Campbell, D. R. (1988). Reactivity of cytosine and thymine in single base pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85:4397–4401.PubMedCrossRefGoogle Scholar
  10. Cuppens, H., Loumi, O., Marynen, P., and Cassiman, J.-J. (1992). Identification of a new frameshift mutation and a duplication polymorphism in the CFTR gene in the Algerian population. Hum. Mol. Genet. 1:283–284.PubMedCrossRefGoogle Scholar
  11. Dean, M. (1995). Resolving DNA mutations. Nature Genet. 9:103–104.PubMedCrossRefGoogle Scholar
  12. Dodson, L. A., and Kant, J. A. (1991). Two temperature PCR and heteroduplex detection: Application to rapid cystic fibrosis screening. Mol. Cell. Probes 5:21–25.PubMedCrossRefGoogle Scholar
  13. Friedl, W, Mandl, M., and Sengteller, M. (1993). Single-step screening method for the most common mutations in familial adenomatous polyposis. Hum. Mol. Genet. 2:1481–1482.PubMedCrossRefGoogle Scholar
  14. Fukai, K., Holmes, S. A., Lucchese, N. J., Siu, V. M., Weleber, R. G., Schnur, R. E., and Spritz, R. A. (1994). Autosomal recessive ocular albinism associated with a functionally significant tyrosinase gene polymorphism. Nature Genet. 9:92–95.CrossRefGoogle Scholar
  15. Ganguly, A., and Prockop, D. J. (1990). Detection of single-base mutations by reaction of DNA heteroduplexes with a water-soluble carbodiimide followed by primer extension: Application to products from the polymerase chain reaction. Nucleic Acids Res. 18:3933–3939.PubMedCrossRefGoogle Scholar
  16. Ganguly, A., Rock, M. J., and Prockop, D. J. (1993). Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in doublestranded PCR products and DNA fragments: Evidence for solvent-induced bends in DNA heteroduplexes. Proc. Natl Acad. Sci. USA 90:10325–10329.PubMedCrossRefGoogle Scholar
  17. Gayther, S. A., Wells, D., SenGupta, S. B., Champan, P., Neale, K., Tsioupra, K., and Delhanty, J. D. A. (1994). Regionally clustered APC mutations are associated with a severe phenotype and occur at a high frequency in new mutation cases of adenomatous polyposis coli. Hum. Mol. Genet. 3:53–56.PubMedCrossRefGoogle Scholar
  18. Glavac, D., and Dean, M. (1993). Optimization of the single strand-conformation polymorphism (SSCP) technique for detection of point mutations. Hum. Mutat. 2:404–414.PubMedCrossRefGoogle Scholar
  19. Guldberg, P., and Güttier, F. (1993). A simple method for identification of point mutations using denaturing gradient gel electrophoresis. Nucleic Acids Res. 9:2261–2262.CrossRefGoogle Scholar
  20. Hamzehloei, T., West, S. P., Chapman, P. D., Burn, J., and Curtis, A. (1994). Four novel germ-line mutations in the APC gene detected by heteroduplex analysis. Hum. Mol. Genet. 3:1023–1024.PubMedCrossRefGoogle Scholar
  21. Highsmith, W. E. (1993). Carrier screening for cystic fibrosis. Clin. Chem. 39:706–707.Google Scholar
  22. Hule, M. L., Chen, A. S., Brooks, S. S., Grix, A., and Hirschhorn, R. (1994). A de novo 13 nt deletion, a newly identified C647W missense mutation and a deletion of exon 18 in infantile onset glycogen storage disease type II (GSDII). Hum. Mol Genet. 3:1081–1087.CrossRefGoogle Scholar
  23. Inglehearn, C. R., Keen, T. J., Bashir, R., Jay, M., Fitzke, M., Bird, A. C., Crombie, A., and Bhattacharyya, S. (1992). A completed screen for mutations of the rhodopsin gene in a panel of patients with autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 1:41–45.PubMedCrossRefGoogle Scholar
  24. Joshua-Tor, L., Frolow, F., Appella, E., Hope, H., Rabinovich, D., and Sussman, J. L. (1992). Three-dimensional structures of bulge-containing DNA fragments. J. Mol. Biol. 225:397–431.PubMedCrossRefGoogle Scholar
  25. Keen, J., Lester, D., Inglehearn, C., Curtis, A., and Bhattacharyya, S. (1991). Rapid detection of single base mismatches as heteroduplexes on Hydrolink gels. Trends Genet. 7:5.PubMedCrossRefGoogle Scholar
  26. Kerem, B. S., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L.-C. (1989). Identification of the cystic fibrosis gene: Genetic analysis. Science 245:1073–1080.PubMedCrossRefGoogle Scholar
  27. Legius, E., Hail, B. K., Wallace, M. R., Collins, F. S., and Glover, T. W. (1994). Ten base pair duplication in exon 38 of the NF1 gene. Hum. Mol. Genet. 3:829–830.PubMedCrossRefGoogle Scholar
  28. Leoni, G. B., Rosatelli, M. C., Cossu, G., Pischedda, M. C., De Virgilliis, S., and Cao, A. (1992). A novel cystic fibrosis mutation: Deletion of seventeen nucleotides at the exon 10-intron 10 boundary of the CFTR gene, in a Sardinian patient. Hum. Mol. Genet. 1:83–84.CrossRefGoogle Scholar
  29. Lerman, L. S., and Silverstein, V. (1987). Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol 155:482–501.PubMedCrossRefGoogle Scholar
  30. McAllister, K. A., Grogg, K. M., Johnson, D. W., Gallione, C. J., Baldwin, M. A., Jackson, C. E., Helmbold, E. A., Markel, D. S., McKinnon, W. C., Murrell, J., McCormick, M. K., Pericak-Vance, M. A., Heutink, P., Oostra, B. A., Haitjema, T., Westerman, C. J. J., Porteous, M. E., Guttmacher, A. E., Letarte, M., and Marchuk, D. A. (1994). Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet. 8:345–351.PubMedCrossRefGoogle Scholar
  31. Maekawa, M., Sudo, K., Kanno, T., Takayasu, S., Li, S. S.-L., Kitajima, M., and Matsuura, Y. (1994). A novel deletion mutation of lactate dehydrogenase A(M) gene in the fifth family with the enzyme deficiency. Hum. Mol. Genet. 3:825–826.PubMedCrossRefGoogle Scholar
  32. Mandl, M., Paffenholz, R., Friedl, W., Caspari, R., Sengteller, M., and Propping, P. (1993). Frequency of common and novel inactivation APC mutations in 202 families with familial adenomatous polyposis. Hum. Mol. Genet. 3:825–826.Google Scholar
  33. Mandl, M., Kadmon, M., Sengteller, M., Caspari, R., Propping, P., and Fiedl, W. (1994). A somatic mutation in the adenomatous polyposis coli (APC) gene in peripheral blood cells—Implications for predictive diagnosis. Hum. Mol Genet. 3:1009–1011.PubMedCrossRefGoogle Scholar
  34. Mary, J.-L. M., Bishop, T., Kolodner, R., Lipford, J. R., Kane, M., Weber, W, Torhorst, J., Mueler, H., Spycher, M., and Scott, R. J. (1994). Mutational analysis of the hMSH2 gene reveals a three base pair deletion in a family predisposed to colorectal cancer development. Hum. Mol Genet. 3:2067–2069.PubMedGoogle Scholar
  35. Mashal, R. D., Koontz, J., and Sklar, J. (1995). Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature Genet. 9:177–183.PubMedCrossRefGoogle Scholar
  36. Meins, M., Griming, G., Blankenagel, A., Krastel, H., Reck, B., Fuchs, S., Schwinger, E., and Gal, A. (1993). Heterozygous ‘null allele’ mutation in the human peripherin/RDS gene. Hum. Mol Genet. 2:2181–2182.PubMedCrossRefGoogle Scholar
  37. Meitinger, T., Golla, A., Dörner, C., Deufel, A., Aulehla-Scholz, A., Boehm, I., Reinhardt, D., and Deufel, T.(1993). In frame deletion (deltaF311) within a short trinucleotide repeat of the first transmembrane region of the cystic fibrosis gene. Hum. Mol. Genet. 2:2173–2174.PubMedCrossRefGoogle Scholar
  38. Molinari, R. J., Conners, M., and Shorr, R. G. L. (1993). Hydrolink gels for electrophoresis, in:Advances in Electrophoresis, Volume 6 (A. Chrambach, M. J. Dunn, and B. J. Radola, eds.), VCH Publishers, New York, pp. 44–60.Google Scholar
  39. Myers, R. M., Larin, Z., and Maniatis, T. (1985). Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230:1242–1249.PubMedCrossRefGoogle Scholar
  40. Myers, R.M., Maniatis, T., and Lerman, L. (1987). Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155:501–527.PubMedCrossRefGoogle Scholar
  41. Nagamine, C. M., Chan, K., and Lau, Y.-F. C. (1989). A PCR artifact: Generation of heteroduplexes. Am. J. Hum. Genet. 45:337–339.PubMedGoogle Scholar
  42. Olds, R. J., Lane, D. A., Beresford, C. J., Abilgaard, U., Hughes, P. M., and Thein, S. L. (1993). A recurrent deletion in the antithrombin gene, AT106–109 (–6 bp), identified by DNA heteroduplex detection. Genomics 16:298–299.PubMedCrossRefGoogle Scholar
  43. Olivas, M. W., and Maher, L. J. (1994). Analysis of duplex DNA by triple helix formation: Application to detection of a p53 microdeletion. Biotechniques 16:128–132.PubMedGoogle Scholar
  44. Orita, M., Suzuki, Y, Sekiya, T., and Hayashi, K. (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879.PubMedCrossRefGoogle Scholar
  45. Ouahchi, K., Arita, M., Kayden, H., Hentati, K., Hamida, M. B., Sokol, R., Arai, H., Ionoue, K., Mandel, J.-L., and Koenig, M. (1995). Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nature Genet. 9:141–145.PubMedCrossRefGoogle Scholar
  46. Paffenholz, R., Mandl, M., Caspari, R., Sengteller, M., Propping, P., and Friedl, W. (1994). Eleven novel germline mutations in the adenomatous polyposis coli (APC) gene. Hum. Mol. Genet. 3:1703–1704.PubMedCrossRefGoogle Scholar
  47. Paul, P., Letteboer, T., Gelbert, L., Groden, J., White, R., and Coppes, M. J. (1993). Identical APC exon 15 mutations result in a variable phenotype in familial adenomatous polyposis. Hum. Mol. Genet. 2:925–931.PubMedCrossRefGoogle Scholar
  48. Perry, D. J., and Carrell, R. W. (1992). Hydrolink gels: A rapid and simple approach to the detection of DNA mutations in thromboembolic disease. J. Clin. Pathol. 45:158–160.PubMedCrossRefGoogle Scholar
  49. Prior, T. W., Papp, A. C., Snyder, P. J., and Sedra, M. S. (1993a). Detection of an exon 53 polymorphism in the dystrophin gene. Hum. Genet. 92:302–304.PubMedCrossRefGoogle Scholar
  50. Prior, T. W., Papp, A. C., Snyder, P. J., Burghes, A. H. M., Sedra, M. S., Western, L. M., Bartolo, C., and Mendell, J. R. (1993b). Exon 44 nonsense mutation in two Duchenne muscular dystrophy brothers detected by heteroduplex analysis. Hum. Mutat. 2:192–195.PubMedCrossRefGoogle Scholar
  51. Prior, T. W, Bartolo, C., Papp, A. C., Snyder, P. J., Sedra, M. S., Burghes, A. H. M., and Mendell, J. R. (1994). Identification of a missense mutation, single base deletion and a polymorphism in the dystrophin exon 16. Hum. Mol. Genet. 3:1173–1174.PubMedCrossRefGoogle Scholar
  52. Ravnik-Glavaö, M., Glavaé, D., and Dean, M. (1994). Sensitivity of single-strand conformation polymorphism (SSCP) and heteroduplex method (HA) for mutation detection in the cystic fibrosis gene. Hum. Mol. Genet. 3:801–807.CrossRefGoogle Scholar
  53. Rommens, J. M., Kerem, B.-S., Greer, W, Chang, P., Tsui, L.-C., and Ray, P. (1990). Rapid nonradioactive detection of the major cystic fibrosis mutation. Am. J. Hum. Genet. 46:395–396.PubMedGoogle Scholar
  54. Saad, F. A., Vitiello, L., Merlini, L., Mostacciuolo, M. L., Olivero, S., and Danieli, G. A. (1992). A 3’ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions. Hum. Mol. Genet. 1:345–346.PubMedCrossRefGoogle Scholar
  55. Sainz, J., Huynh, D. P., Figuerosa, K., Ragge, N. K., Baser, M. E., and Pulst, S. M. (1994). Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum. Mol. Genet. 3:885–891.PubMedCrossRefGoogle Scholar
  56. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989). Attachment of a 40-base pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86:232–236.PubMedCrossRefGoogle Scholar
  57. Shen, M. H., Harper, P. S., and Upadhyaya, M. (1992). Neurofibromatosis type 1 (NF1):The search for mutations by PCR-heteroduplex analysis on Hydrolink gels. Hum. Mol. Genet. 1:735–740.PubMedCrossRefGoogle Scholar
  58. Sorrentino, R., Iannicola, C., Costanzi, S., Chersi, A., and Roberto, T. (1991). Detection of complex alleles by direct analysis of DNA heteroduplexes. Immunogenetics 33:118–123.PubMedCrossRefGoogle Scholar
  59. Sorrentino, R., Cascino, I., and Tosi, R. (1992a). Subgrouping of DR4 alleles by DNA heteroduplex analysis. Hum. Immunol. 33:18–23.PubMedCrossRefGoogle Scholar
  60. Sorrentino, R., Potolicchio, I., Ferrara, G. B., and Tosi, R. (1992b). A new approach to HLA-DPB1 typing combining DNA heteroduplex analysis with allele-specific amplification and enzyme restriction. Immunogenetics 36:248–254.PubMedCrossRefGoogle Scholar
  61. Tassabehji, M., Read, A. P., Newton, V. E., Harris, R., Balling, R., Gruss, P., and Strachan, T. (1992). Waardenburg’s syndrome patients have mutations in the human homologue. Nature 355:635–636.PubMedCrossRefGoogle Scholar
  62. Tassabehji, M., Newton, V. E., and Read, A. P. (1994). Waardenburg’s syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genet. 8:251–255.PubMedCrossRefGoogle Scholar
  63. Triggs-Raine, B. L., and Gravel, R. A. (1990). Diagnostic heteroduplexes: Simple detection of carriers of a 4-bp insertion mutation in Tay-Sachs disease. Am. J. Hum. Genet. 46:183–184.PubMedGoogle Scholar
  64. Tsukamoto, H., Inui, K., Matsuoka, T., Yanagihara, L, Fukushima, H., and Okada, S. (1994). One base deletion in the cysteine-rich domain of the dystrophin gene in Duchenne muscular dystrophy patients. Hum. Mol. Genet. 3:995–996.PubMedCrossRefGoogle Scholar
  65. Upadhyaya, M., Shen, M., Cherryson, Farnham, J., Maynard, J., Huson, S. M., and Harper, P. S. (1992). Analysis of mutations at the neurofibromatosis 1 (NF1) locus. Hum. Mol. Genet. 1:735–740.PubMedCrossRefGoogle Scholar
  66. van den Akker, E., Braun, J. E. F, Pals, G., Lafleur, M. V. M., and Retel, J. (1992). Single base mutations can be unequivocally and rapidly detected by analysis of DNA heteroduplexes, obtained with deletion-mutant instead of wild-type DNA. Nucleic Acids Res. 24:6745–6746.CrossRefGoogle Scholar
  67. Wang, Y.-H., Barker, P., and Griffith, J. J. (1992). Visualization of diagnostic heteroduplex DNAs from cystic fibrosis deletion hétérozygotes provides an estimate of the kinking of DNA by bulged bases. J. Biol. Chem. 267:4911–4915.PubMedGoogle Scholar
  68. White, M. B., Amos, J., Hsu, J. M., Gerrard, B., Finn, P., and Dean, M. (1990). A frameshift mutation in the cystic fibrosis gene. Nature 344:665–667.PubMedCrossRefGoogle Scholar
  69. White, M. B., Carvalho, M., Derse, D., O’Brien, S. J., and Dean, M. (1992). Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12:301–306.PubMedCrossRefGoogle Scholar
  70. Williams, C. J., Rock, M., Considine, E., McCarron, S., Gow, P., Ladda, R., McLain, D., Michels, V. M., Murphy, W., Prockop, D. J., and Ganguly, A. (1995). Three new point mutations in type II procollagen (COL2A1) and identification of a fourth family with the COL2A1 Arg519→Cys base substitution using conformation sensitive gel electrophoresis. Hum. Mol. Genet. 4:309–312.PubMedCrossRefGoogle Scholar
  71. Winterpacht, A., Schwarze, U., Mundlos, S., Menger, H., Spranger, J., and Zabei, B. (1994). Alternative splicing as the result of a type II procollagen gene (COL2A1) mutation in a patient with Kniest dysplasia. Hum. Mol. Genet. 3:1891–1893.PubMedCrossRefGoogle Scholar
  72. Wood, N., Tyfield, L., and Bidwell, J. (1993a). Rapid classification of phenylketonuria genotypes by analysis of heteroduplexes generated by PCR-amplifiable synthetic DNA. Hum. Mutat. 2:131–137.PubMedCrossRefGoogle Scholar
  73. Wood, N., Standen, G., Hows, J., Bradley, B., and Bidwell, J. (1993b). Diagnosis of sickle-cell disease with a universal heteroduplex generator. Lancet 342:1519–1520.PubMedCrossRefGoogle Scholar
  74. Wood, N., Standen, G., Old, J., and Bidwell, J. (1995). Genotyping for haemoglobins S and C by DNA crossmatching with a universal heteroduplex generator. Hum. Mutat. 5:166–172.PubMedCrossRefGoogle Scholar
  75. Woodson, S. A., and Crothers, D. M. (1988). Structural model for an oligonucleotide containing a bulged guanosine by NMR and energy minimization. Biochemistry 27:3130–3141.PubMedCrossRefGoogle Scholar
  76. Youil, R., Kemper, B., and Cotton, R. G. H. (1995). Screening for mutations by enzyme mismatch cleavage using T4 endonuclease VII. Proc. Natl. Acad. Sci. USA 92:87–91.PubMedCrossRefGoogle Scholar
  77. Zimmerman, P. A., Carrington, M. N., and Nutman, T. B. (1993). Exploiting structural differences among heteroduplex molecules to simplify genotyping the DQA1 and DQB1 alleles in human lymphocyte typing. Nucleic Acids Res. 21:4541–4547.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Damjan Glavač
    • 1
  • Michael Dean
    • 2
  1. 1.Medical FacultyInstitute of PathologyLjubljanaSlovenia
  2. 2.Laboratory of Viral Carcinogenesis, National Cancer InstituteFrederick Cancer Research and Development CenterFrederickUSA

Personalised recommendations