Ligation-Mediated PCR for Analysis of Oxidative DNA Damage

  • Régen Drouin
  • Henry Rodriguez
  • Gerald P. Holmquist
  • Steven A. Akman

Abstract

Reactive oxygen species (ROS), including Superoxide anion, hydrogen peroxide (H2O2), hydroxyl radical, and singlet oxygen, may play an important role in promoting aging and neoplastic transformation (reviewed in Breimer, 1990; Floyd, 1990; Halliwell and Gutteridge, 1990; Piette, 1991; Ames et al., 1993; Guyton and Kensler, 1993; Nohl, 1993). Part of this role may be mediated by ROS-induced DNA mutations at critical sites. ROS, which are produced by any oxidative stress, are known to cause promutagenic damage due to a direct interaction of hydroxyl radicals and singlet oxygen with DNA (Breimer, 1990). ROS can be produced by a variety of exogenous and intracellular mechanisms, including ionizing radiation, cigarette smoke, air pollutants, toxins, UV light, inflammation, and intracellular metabolism (Guyton and Kensler, 1993). Ames (1987) has estimated that each human cell sustains an average of 103 “oxidative hits” each day.

Keywords

Sodium Dodecyl Sulfate Strand Break Break Frequency Abasic Site Sequence Ladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B. N. (1987). Oxidative DNA damage, cancer, and aging. Ann. Intern. Med. 107:526–545.PubMedCrossRefGoogle Scholar
  2. Ames, B. N., Shigenaga, M. K., and Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90:7915–7922.PubMedCrossRefGoogle Scholar
  3. Aruoma, O. L, Halliwell, B., Gajewski, E., and Dizaroglu, M. (1991), Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem. J. 273:601–604.PubMedGoogle Scholar
  4. Boiteux, S. (1993). Properties and biological functions of the NTH and FPG proteins of Escherichia coli; two DNA glycosylases that repair oxidative damage in DNA. J. Photochem. Photobiol. B Biol. 19:87–96.CrossRefGoogle Scholar
  5. Boveris, A. (1977). Mitochondrial production of Superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol 75:67–82.CrossRefGoogle Scholar
  6. Breimer, L. H. (1990). Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: The role of DNA base damage. Mol. Carcinogen. 3:188–197.CrossRefGoogle Scholar
  7. Bryan, S. E., and Frieden, E. (1967). Interaction of copper(II) with deoxyribunucleic acid below 30 degrees. Biochemistry 6:2728–2734.PubMedCrossRefGoogle Scholar
  8. Cheeseman, K. H., and Slater, T. F. (1993). An introduction to free radical biochemistry. Br. Med. Bull. 49:481–493.PubMedGoogle Scholar
  9. Chevion, M. (1988). A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. J. Free Radicals Biol. Med. 5:27–37.CrossRefGoogle Scholar
  10. Church, G. M., and Gilbert, W. (1984). Genomic sequencing. Proc. Nati Acad. Sci. USA 81:1991–1995.CrossRefGoogle Scholar
  11. Dizdaroglu, M. (1991). Chemical determination of free radical-induced damage to DNA. J. Free Radicals Biol. Med. 10:225–242.CrossRefGoogle Scholar
  12. Dizdaroglu, M. (1992). Oxidative damage to DNA in mammalian chromatin. Mutat. Res. 275:331–342.PubMedCrossRefGoogle Scholar
  13. Dizdaroglu, M., Rao, G., Halliwell, B., and Gajewski, E. (1991a). Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch. Biochem. Biophys. 285:317–324.PubMedCrossRefGoogle Scholar
  14. Dizdaroglu, M., Nackerdien, Z., Chao, B.-C, Gajewski, E., and Rao, G. (1991b). Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Arch. Biochem. Biophys. 268:388–390.CrossRefGoogle Scholar
  15. Doetsch, P. W., and Cunningham, R. P. (1990). The enzymology of apurinic/apyrimidinic endonucleases. Mutat. Res. 236:173–201.PubMedCrossRefGoogle Scholar
  16. Drouin, R., Rodriguez, H., Gao, S., Gebreyes, Z., O’Connor, T. R., Holmquist, G. P., and Akman, S. A. (1996). Cupric ion/ascorbate/H2O2-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Rad. Biol. Med., in press.Google Scholar
  17. Floyd, R. A. (1990). Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4:2587–2597.PubMedGoogle Scholar
  18. Floyd, R. A., Watson, J. J., Harris, J., West, M., and Wong, P. K. (1986). Formation of 8-hydroxy-deoxyguanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to tumor promoter, tetradeconyl phorbol-acetate. Biochem. Biophys. Res. Commun. 137:841–846.PubMedCrossRefGoogle Scholar
  19. Floyd, R. A., West, M. S., Eneff, K. L., Hogsett, W. E., and Tingey, D. T. (1988). Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Arch. Biochem. Biophys. 262:266–272.PubMedCrossRefGoogle Scholar
  20. Geierstanger B. H., Kagawa, T. F., Chen, S.-L., Quigley, G. J., and Ho, P. S. (1991). Base-specific binding of copper(II) to Z-DNA. J. Biol. Chem. 266:20185–20191.PubMedGoogle Scholar
  21. Goldstein, S., and Czapski, G. (1986). The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from toxicity of O-2. J. Free Radical Biol. Med. 2:3–11.Google Scholar
  22. Guyton, K. Z., and Kensler, T. W. (1993). Oxidative mechanisms in carcinogenesis. Br. Med. Bull. 49:523–544.PubMedGoogle Scholar
  23. Halliwell, B., and Aruoma, O. I. (1991). DNA damage by oxygen-derived species. FEBS Lett. 281:9–19.PubMedCrossRefGoogle Scholar
  24. Halliwell, B., and Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 186:1–85.PubMedCrossRefGoogle Scholar
  25. Hatahet, Z., Kow, Y. W, Purmal, A. A., Cunningham, R. P., and Wallace, S. S. (1994). New substrates for old enzymes. 5-hydroxy-2′-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 269:18814–18820.PubMedGoogle Scholar
  26. Izatt, R. M., Christensen, J. J., and Rytting, J. H. (1971). Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev. 71:439–457.PubMedCrossRefGoogle Scholar
  27. John, D. C. A., and Douglas, K. T. (1989). Apparent sequence preference in cleavage of linear B-DNA by the Cu(II):thiol system. Biochem. Biophys. Res. Commun. 165:1235–1242.PubMedCrossRefGoogle Scholar
  28. Kagawa, T. F., Geierstanger, B. H., Wang, H.-J., and Ho, P. S. (1991). Covalent modification of guanine bases in double-stranded DNA. J. Biol. Chem. 266:20175–20184.PubMedGoogle Scholar
  29. Kasai, H., Crain, P. F, Kuchino, Y, Nishimura, S., Ootsuyama, A., and Tanooka, H. (1986). Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7:1849–1851.PubMedCrossRefGoogle Scholar
  30. Kazakov, S. A., Astashkina, T. G., Mamaev, S. V., and Vlassov, V. V. (1988). Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction. Nature 335:186–188.PubMedCrossRefGoogle Scholar
  31. Maniatis, T., Fritsch, E. F, and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  32. Masarwa, M., Cohen, H., Meyerstein, D., Hickman, D. L., Bakac, A., and Espenson, J. H. (1988). Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cu+ and Cr2+. J. Am. Chem. Soc. 110:4293–4297.CrossRefGoogle Scholar
  33. Maxam, A. M., and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.PubMedCrossRefGoogle Scholar
  34. Milne, L., Nicotera, P., Orrenius, S., and Burkitt, M. J. (1993). Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Pro-oxidant properties of glutathione. Arch. Biochem. Biophys. 304:102–109.PubMedCrossRefGoogle Scholar
  35. Minchekova, L. E., and Ivanov, V. I. (1967). Influence of reductants upon optical characteristics of the DNA-Cu2+ complex. Biopolymers 5:615–625.CrossRefGoogle Scholar
  36. Mueller, P. R., and Wold, B. (1989). In vivo footprinting of a muscle specific enhancer by ligation-mediated PCR. Science 246:780–786.PubMedCrossRefGoogle Scholar
  37. Mueller, P. R., and Wold, B. (1991). Ligation mediated PCR:Applications to genomic footprinting. Methods 2:20–31.CrossRefGoogle Scholar
  38. Nohl, H. (1993). Involvement of free radicals in ageing: A consequence or cause of senescence. Br. Med. Bull 49:653–667.PubMedGoogle Scholar
  39. Pezzano, H., and Podo, F. (1980). Structure of binary complexes of mono-and polynucleotides with metal ions of the first transition group. Chem. Rev. 80:366–401.CrossRefGoogle Scholar
  40. Pfeifer, G. P., and Riggs, A. A. (1991). Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR. Genes Dev. 5:1102–1113.PubMedCrossRefGoogle Scholar
  41. Pfeifer, G. P., and Riggs, A. D. (1993a). Genomic footprinting by ligation mediated polymerase chain reaction, in:PCR Protocols: Current Methods and Applications (B. White, ed.), Humana Press, Totowa, NJ, pp. 153–168.CrossRefGoogle Scholar
  42. Pfeifer, G. P., and Riggs, A. D. (1993b). Genomic sequencing, in:DNA Sequencing Protocols (A. Griffin and H. Griffin, eds.), Humana Press, Totowa, NJ, pp. 169–181.CrossRefGoogle Scholar
  43. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989). Genomic sequencing and methylation analysis by ligation mediated of PCR. Science 246:810–813.PubMedCrossRefGoogle Scholar
  44. Pfeifer, G. P., Drouin, R., and Holmquist, G. P. (1993a). Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat. Res. 288:39–46.PubMedCrossRefGoogle Scholar
  45. Pfeifer, G. P., Singer-Sam, J., and Riggs, A. D. (1993b). Analysis of methylation and chromatin structure. Methods Enzymol. 225:567–583.PubMedCrossRefGoogle Scholar
  46. Piette, J. (1991). Biological consequences associated with DNA oxidation mediated by singlet oxygen. J. Photochem. Photobiol. B Biol. 11:241–260.CrossRefGoogle Scholar
  47. Priitz, W. A., Butler, J., and Land, E. J. (1990). Interaction of copper(I) with nucleic acids. Int. J. Radiat. Biol. 58:215–234.CrossRefGoogle Scholar
  48. Rodriguez, H., Drouin, R., Holmquist, G. P., O’Connor, T. R., Boiteux, S., Laval, J., Doroshow, J. H., and Akman, S. A. (1995). Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated PCR. J. Biol. Chem. 270:17633–17640.PubMedCrossRefGoogle Scholar
  49. Rodriguez, H., Drouin, R., Holmquist, G. P., and Akman, S. (1996). Repair of a hydrogen-peroxide-induced in vivo footprint in the human hypoxia-inducible factor 1 binding site of the PGK1 gene (unpublished).Google Scholar
  50. Rychlik, W., and Rhoads, R.-E. (1989). A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17:8543–8551.PubMedCrossRefGoogle Scholar
  51. Sagripanti, J.-L., and Kraemer, K. H. (1989). Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J. Biol Chem. 264:1729–1734.PubMedGoogle Scholar
  52. Stoewe, R., and Priitz, W. A. (1987). Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide: Kinetics and yield. J. Free Radicals Biol. Med. 3:97–105.CrossRefGoogle Scholar
  53. Wallace, S. S. (1988). AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ. Mol. Mutagen. 12:431–477.PubMedCrossRefGoogle Scholar
  54. Yamamoto, K., and Kawanishi, S. (1989). Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide. J. Biol. Chem. 264:15435–15440.PubMedGoogle Scholar
  55. Yamamoto, K., and Kawanishi, S. (1992). Site-specific DNA damage by phenylhydrazine and phenelzine in the presence of Cu(II) ion or Fe(III) complexes: Roles of active oxygen species and carbon radicals. Chem. Res. Toxicol. 5:440–446.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Régen Drouin
    • 1
  • Henry Rodriguez
    • 2
  • Gerald P. Holmquist
    • 1
  • Steven A. Akman
    • 2
  1. 1.Division of BiologyBeckman Research Institute of the City of HopeDuarteUSA
  2. 2.Department of Medical Oncology and Therapeutics ResearchCity of Hope National Medical CenterUSA

Personalised recommendations