Ligation-Mediated PCR for Analysis of UV Damage

  • Silvia Tornaletti
  • Gerd P. Pfeifer


UV irradiation of DNA produces two major types of DNA lesions:the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6−4) pyrimidone photoproducts [(6−4) photoproducts]. Cyclobutane dimers are formed between the 5,6 bonds of two adjacent pyrimidines, 5′-TpT, 5′-TpC, 5′-CpT, or 5′-CpC. The (6−4) photoproducts have a covalent bond between positions 6 and 4 of two adjacent pyrimidines, and are detected most frequently at 5′-TpC and 5′-CpC sequences. The (6−4) photoproducts are formed at a rate of approximately 30% of that of CPDs and this ratio appears to be DNA sequence-dependent (Mitchell and Nairn, 1989). Both photoproducts are mutagenic in Escherichia coli and in mammalian cells (Brash, 1988).


Pyrimidine Dimer Cyclobutane Pyrimidine Dimer DHFR Gene Saran Wrap Endonuclease Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985). DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359–369.PubMedCrossRefGoogle Scholar
  2. Bourre, F., Renault, G., and Sarasin, A. (1987). Sequence effect on alkali-sensitive sites in UV-irradiated SV40 DNA. Nucleic Acids Res. 15:8861–8875.PubMedCrossRefGoogle Scholar
  3. Brash, D. E. (1988). UV mutagenic photoproducts in Escherichia coli and human cells: A molecular genetics perspective on human skin cancer. Photochem. Photobiol. 48:59–66.PubMedCrossRefGoogle Scholar
  4. Brash, D. E., and Haseltine, W. A. (1982). UV-induced mutation hotspots occur at DNA damage hotspots. Nature 298:189–192.PubMedCrossRefGoogle Scholar
  5. Drouin, R., and Holmquist, G. P. (1993). UV-induced pyrimidine monoadducts and their in vivo photofootprints, in:Chromosomal Aberrations: Origin and Significance (G. Obe and A.T. Natarajan, eds.), Springer Verlag, Berlin, pp. 10–20.Google Scholar
  6. Gale, J. M., Nissen, K. A., and Smerdon, M. J. (1987). UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc. Natl Acad. Sci. USA 84:6644–6648.PubMedCrossRefGoogle Scholar
  7. Gao, S., Drouin, R., and Holmquist, G. P. (1994). DNA repair rates mapped along the human PGK-1 gene at nucleotide resolution. Science 263:1438–1440.PubMedCrossRefGoogle Scholar
  8. Glickman, B. W., Schaaper, R. M., Haseltine, W. A., Dunn, R. L., and Brash, D. E. (1986). The C-C (6−4) UV photoproduct is mutagenic in Escherichia coli. Proc. Natl. Acad. Sci. USA 83:6945–6949.PubMedCrossRefGoogle Scholar
  9. Gordon, L. K., and Haseltine, W. A. (1980). Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus UV-specific endonucleases. J. Biol. Chem. 255:12047–12050.PubMedGoogle Scholar
  10. Haseltine, W. A., Gordon, L. K., Lindan, C. P., Grafstrom, R. H., Shaper, L. N., and Grossman, L. (1980). Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature 285:634–641.PubMedCrossRefGoogle Scholar
  11. Lippke, J. A., Gordon, L. K., Brash, D. E., and Haseltine, W. A. (1981). Distribution of UV light-induced damage in a defined sequence of human DNA:Detection of alkaline-sensitive lesions at pyrimidine nucleoside-cytidine sequences. Proc. Natl. Acad. Sci. USA 78:3388–3392.PubMedCrossRefGoogle Scholar
  12. Maxam, A. M., and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.PubMedCrossRefGoogle Scholar
  13. Mellon, I., Spivak, G., and Hanawalt, P. C. (1987). Selective removal of transcription blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241–249.PubMedCrossRefGoogle Scholar
  14. Mitchell, D. L., and Nairn, R. S. (1989). The biology of the (6−4) photoproduct. Photochem. Photobiol. 49:805–819.PubMedCrossRefGoogle Scholar
  15. Mueller, P. R., and Wold, B. (1989). In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786.PubMedCrossRefGoogle Scholar
  16. Pfeifer, G. P., and Riggs, A. D. (1993). Genomic footprinting by ligation mediated polymerase chain reaction, in:Methods in Molecular Biology, Volume 15, (B. A. White, ed.), Humana Press, Totowa, NJ, pp. 153–168.Google Scholar
  17. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989). Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246:810–813.PubMedCrossRefGoogle Scholar
  18. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991). In vivo mapping of a DNA adduct at nucleotide resolution: Detection of pyrimidine (6−4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl Acad. Sci. USA 88:1374–1378.PubMedCrossRefGoogle Scholar
  19. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992). Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell. Biol. 12:1798–1804.PubMedGoogle Scholar
  20. Pfeifer, G. P., Drouin, R., and Holmquist, G. P. (1993). Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat. Res. 288:39–46.PubMedCrossRefGoogle Scholar
  21. Rozek, D., and Pfeifer, G. P. (1993). In vivo protein-DNA interactions at the c.-jun promoter: Preformed complexes mediate the UV response. Mol. Cell. Biol. 13:5490–5499.PubMedGoogle Scholar
  22. Rychlik, W., and Rhoads, R. E. (1989). A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17:8543–8551.PubMedCrossRefGoogle Scholar
  23. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  24. Selby, C. P., and Sancar, A. (1993). Molecular mechanism of transcription-repair coupling. Science 260:53–58.PubMedCrossRefGoogle Scholar
  25. Selleck, S. B., and Majors, J. (1987). Photofootprinting in vivo detects transcription-dependent changes in yeast TATA boxes. Nature 325:173–177.PubMedCrossRefGoogle Scholar
  26. Törmänen, V. T., and Pfeifer, G. P. (1992). Mapping of UV photoproducts within ras protooncogenes in UV-irradiated cells: Correlation with mutations in human skin cancer. Oncogene 7:1729–1736.PubMedGoogle Scholar
  27. Tornaletti, S., and Pfeifer, G. P. (1994). Slow repair of pyrimidine dimers at p53 mutation hot spots in skin cancer. Science 263:1436–1438.PubMedCrossRefGoogle Scholar
  28. Tornaletti, S., and Pfeifer, G. P. (1995a). UV-light as a footprinting agent: Modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J. Mol Biol. 249:714–728.PubMedCrossRefGoogle Scholar
  29. Tornaletti, S., and Pfeifer, G. P. (1995b). Complete and tissue-independent methylation of CpG sites in the p53 gene: Implication for mutations in human cancers. Oncogene 10:1493–1499.PubMedGoogle Scholar
  30. Tornaletti, S., Rozek, D., and Pfeifer, G. P. (1993). The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene 8:2051–2057.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Silvia Tornaletti
    • 1
  • Gerd P. Pfeifer
    • 1
  1. 1.Department of BiologyBeckman Research Institute of the City of HopeDuarteUSA

Personalised recommendations